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PREFACE.

Parts I, II, and III of this Text-Book are devoted almost
entirely to framed structures having two supports whose reac-
tions are vertical. These probably constitute more than ninety
per cent of all roof and bridge trusses, and hence should claim
the greater part of the time of the student. In this volume are
discussed those structures which have more than two supports,
as continuous, draw and cantilever bridges, or which have two
supports whose reactions are not vertical, as the suspension and
arched systems.

The investigations here given are mainly those of the theory
of stresses and their determination by analytic or graphic
methods. The continuous girder is treated with less fullness
than usual, but sufficiently to develope the necessary formulas
for swing bridges. Partially continuous swing bridges are dis-
cussed in detail and an exact method is given for finding the
true reactions and stresses. Cantilever and suspension struc-
tures are treated more fully than is usual in American books,
and critical analyses regarding economic proportions and the
limitations of the theory are presented. The discussion of the
three-hinged arch is also given in detail, the actual maximum
and minimum stresses being computed for several cases. For
arches with two hinges and with no hinges the reactions are
determined analytically while the stresses are derived by simple
graphic constructions. In finding the conditions of loading and
the stresses the effort has been made to develope those analytic
and graphic methods which seem simplest in theory and most

iii



iv PREFACE.

expeditious in practical use. The attempt has been made
throughout to present the subject clearly and concisely, to in-
cite interest by giving historical information, and to exemplify
the theory by illustrative examples and problems from the best
engineering practice.

The word ‘kip’ is used in this volume to denote one thou-
sand pounds. As one thousand grams is a kilogram which
is usually abbreviated into kilo, so one thousand pounds may
be called a kilopound and be abbreviated into kip. Since
stresses are now generally computed in thousands of pounds
ifistead of in tons or pounds, a name for the new unit is advan-
tageous, and after using it for several years in the classroom it
is thought best to formally suggest its general adoption.
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HIGHER STRUCTURES.

CHAPTER 1.
CONTINUOUS BRIDGES.
ART. 1. INTRODUCTION.

Probably over ninety per cent of all roof and bridge structures
are formed by the use of the simple beams or trusses which are
analysed and discussed in Parts I, II, and III of this text-book.
Other kinds of trusses may be grouped together under the name
of Higher Structures, a term which implies that they are more
. complex in theory and design, and that they are built only for
long spans or under special circumstances to which simple
trusses do not economically apply.

A simple beam or truss rests upon two supports, and exerts
only vertical pressures upon those supports.. A continuous,
draw, or cantilever truss rests upon more than two supports,
but exerts only vertical pressures upon them. . A suspension or
arched structure exerts horizontal as well as vertical pressures
upon its supports.

A beam or truss which rests upon more than two supports,
and has no joints or hinges to prevent the full transmission of
shears and moments from one span to another, is said to be
continuous, or fully continuous. Such is the case with a solid
beam laid upon several supports, like a floor girder or a railroad
rail; such is the case with a trussed structure which has its

I



2 ' CONTINUOUS BRIDGES. Caar. 1.

chords and webbing extended without interruption over its
entire length. Many swing draw bridges have such continuous
trusses.

For a simple beam or truss the reactions due to a given load

- are at once found by the principles of statics, and the stresses

due to the load are then computed. For a continuous beam or
truss, however, the reactions due to a given load cannot be
found by pure. statics, as they are greater in number than the
statical conditions of equilibrium. To find the reactions for
continuous beams, an additional condition is to be introduced
from the theory of elasticity by means of the equation of the
elastic curve. After the reactions are computed, the shears and
moments due to given loads are readily determined either ana-
lytically or graphically.

Continuous bridges were extensively built in Europe between
the years 1850 and 1870, the number of spans in a structure
being usually three, four, or five, and the length of span ranging
from 125 to 250 feet. They have not been used in the United
States except for swing draw bridges, of which many have been
erected over navigable rivers. As a rule, when several spans
are required to cross a river several independent simple trusses
are preferable to one continuous structure, as in the latter case
great changes in stresses may be caused by very slight varia-
tions in the level of the piers. The general theory of continuity
is, however, of great importance on account of the extensive use
of continuous solid beams in building construction, as well as the
continuous draw bridges and other partially continuous struct-
ures used in cantilever and suspension systems.

ART. 2. VERTICAL SHEARS AND BENDING MOMENTS.

If a beam or truss be cut by a vertical plane, all the internal
forces or stresses in the section may be resolved into horizontal
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and vertical components. The sum of the horizontal compo-
nents is zero, since all the external forces or loads are vertical.
The sum of the vertical components is the resistance to shearing
in that vertical plane, and is cajled the internal shear, or simply
the shear. Further, the sum of the moments of all these
stresses about any point in the plane is called the resisting
moment. From the internal shear and the resisting moment
the stresses themselves are determined.

Since the girder is in equilibrium, the internal shear and re-
sisting moment are balanced by the vertical shear and the
bending moment of the external forces acting on either side of
the section. The algebraic sum of all the external forces on the
left of the section is called the vertical shear 7, and the alge-
braic sum of the moments of all the external forces on the left
of the section with respect to a point in that section is called
the bending moment 4. Thus the internal shear and moment
are equal respectively to " and M.

From the definitions just stated the values of 77 and M are
readily written for any section of a continuous girder loaded
in any manner, provided that the reactions of the supports be
known. For instance, let the upper

. P je—z
diagram in Fig. 1, represent a beam £ 3 = 7 2
of three equal spans loaded with w = s _
per linear unit. Let / be the length ~ ? 3 4
Fig.1. .

of span, then the total load is 3w/,
and by methods which will be given later the reactions may be
found to be R, =R, =o0.4w/, and Ry =Ry=1.1w/ Now let
a section be taken in the middle span at a distance x from the
second support, then for this section,
V=R, +R,—w(l+x)=05wl—wx, .
M=R,(I+7)+ Ry — w(z+x)’_"2'f

= —o0.1 w2+ 0.5 wlr — 0.5 wa?,
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are expressions for the vertical shear and the bending
moment.

Again, in the lower diagram of Fig. 1, let a single load P
be on the middle span at a distance }/ from the support z;
for this case the reactions are R=— 2% P, R,=+ }}2 P,
Ry=+}$} P, and R,=— 2% P. Now for a section in the
middle span distant x from the support 2 and beyond the load,
the shear is ’

V=R,+R,—P=—}}} P,

and the moment is expressed by
M=R\(l+x)+Ryx —P(x—4))=+ 33 Pl — {3} Pz, *
in which » may have any value between 4/ and /.

For a continuous truss with parallel chords, as is generally
the case, where the webbing is such that only one web member
is cut by the section, the stress in that member is 7 sec,
where 0 is the angle which the member makes with the vertical
(Part I, Art. 26). Further, if the section pass through a center
of moments for a chord member, the stress for that chord
member is #//d, where d is the lever arm of the chord member,
or the depth of truss when the chords are parallel. Thus when
V and M have been computed for given loads at all sections,
the stresses due to those loads are readily found for all truss
members. -

For a continuous solid beam the values of V7 and M serve
to determine the unit stresses of shearing in the cross-section
and of tension and compression on the sides of the beam, by
the methods established in. Mechanics of Materials, Art. 21.

Problem 1. For the two cases in Fig. 1 derive the values of
V and M for a section at the center of the first span, and also
for a section in the middle span at a distance of }/ from the
support 2. '
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ART. 3. REACTIONS OF SUPPORTS.

The reactions of the supports of a continuous beam are to
be determined by first finding, by the method of Art. 4, the
bending moments at the
supports, and then stat- , 2 lp 3 ‘ 5
ing equations of moments 2 7 7 7 7 3
fof sc:.ctions at those sup- TR’ fk’ ’ ?RJ ’ ?R‘ ’ TR‘
ports. For example, let
there be four spans, as in Fig. 2, where /; = 80 feet, /, = 100 feet,
/3 = 50 feet, /, = 40 feet, and let a single load of 1000 pounds be
on the second span at a distance of 40 feet from the support 2.
Let the bending moments at the supports be M, = M; =0 as

Fig. 2.

the ends are not restrained, J, = — 8200, My = — 8856, M,=

+ 2464 pound-feet. It is required to compute the reactions.

- Taking 2 as a center of moments, the bending moment is
R/, or 80 R, whence 80 R; = — 8200 and hence R; =— 102.5
pounds. Again taking 7 as a center of moments,

' Ry x 180 + R, X 100 — P x 60 = — 8856,

whence R, = + 695.9 pounds. For the next equation the center
is at ¢ and there is found R; =+ 632.9. To find R, and R
it is more convenient to use the forces on the right of the
section; thus with center at ¢ the equation is Ry/, = + 2464,
whence R, =+61.6. ~Lastly, with center at 7 there is found
R,=—288.0. The sum of these five reactions equals 1000
pounds, as should be the case.

As a second example, let there be four equal spans uniformly
loaded and let the moments at the supports be given as

My=My=0; My=M,=—Fgwl*; My=—F5wl

To find the reactions, the centers of moments are taken at the -

supports 2, 7, and ¢ successively. Thus,
R —Lwi?=—P;wl?
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from which R, = +}}w/; also R,=+3§w/,and R;=+3§wl.
Here, from the symmetry of the spans and load, it is plain that
Ry =R, and that R, =R,

Prob. 2. A continuous beam has three spans, each 6 feet long,
and a load of 1200 pounds at the middle of the first span. The
moments M, and M, are —720 and 4180 pound-feet respec-
tively. Show that the four reactions are + 480, +870, —180,
and + 30 pounds.

ART. 4. THE THEOREM OF THREE MOMENTS.

The moments at the supports of a continuous girder are
- deduced by help of the theorem of three moments, a demon-
stration of which will now be given.

Let /, and /;, in Fig. 3, represent two consecutive spans of a
continuous beam, having the loads P, and P; at the distances
kly and £/; from the sup-

/ Y A
t---'él,---&lg ---ufal{; ’ *; ports 2 and 37; here £
o ¥~ is any fraction less than
4e 3 y % i d
b J {x unity, and not necessa-
F:'*"'""'z"'“'" rily the same for the two
“3 loads. Let A/ be the

bending moment for a point of the elastic curve in the span /4,
whose coordinates are » and y. As shown in Mechanics of
Materials, Art. 33, the general equation of the elastic curve is

2
Cx 0

where / is the moment of inertia of the cross-section of the
beam, and £ is the coefficient of elasticity of the material.
Now, let 7; be the resultant of all the vertical forces on the
left of Pg, and let v be the distance of its point of application
to the left of 3. The bending moment for the given section is
then M = Vy(v+ x)— Py(x — kly); or, since Vyv is My, the
moment at 3, M = My + Vyx — Py(x — kly). (2)

-~

-
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If, in this, » be made /;, the value of M is M, and thus

M, — M,

T+ B - 4) ®
This is the shear at the right of the support 3, since V3 is the
resultant of all the vertical forces on the left of the give
load Py. :

In the span /, the elastic curve on the right of the load will
have a different equation from that on the left of the load, as
the moment on the right is given by (2), while the moment on
the left is simply M3+ V;x. Inserting this in (1), and integrat-
ing twice, the following are found for the elastic curve on the
left of the load:

V,=

EI% = Mz + 3 Vo3 +C, (4)
Ely =} M2 + 3 Vyx® +Cx + (5 (5)

and, similarly, for the elastic curve on the right of the load,
EI%: Myx + }Vyad — } Pya® + Bllyx +C'; (a)

Ely=3 M2+ 3 Vax® — } Pea® + Y PRl +C'x + G, (5)
To determine the constants of integration, there are four
conditions : first, when x =0 in (5), then y = /%;; second, when
=/ in (5), then y=~4,; third, when x = £/, the values of
dy/dx are the same in (4) and (4)'; and, fourth, when z = £/,
the values of y are the same in (5) and (5).

The constants being found and the value of 7 inserted from
(3) the inclinations of the elastic curve at 3 and ¢ are deter-
mined by making * =o0in (4) and x=/in (4)'; thus if 4 and
2, be these inclinations,

4= hy—hy  2Mgly + M4y + P,,ls’(zk—3k’+k')' )
JA 6El -

hy—hy | Myly + 2 Ml + Pyl Xk — B
t= 41, 8 4 2a's 463Elss( ) 6y
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Also, diminishing each subscript in (6) by unity,

by — hy | Myl + 2 My + Pol2(k — #3)
“h T T eEl @

is the inclination at 7 in terms of the load on the span /,.

I3 =

As the two values of #; given by (6) and (7) must be equal,
since the curve is continuous over the support, there results

Mty + 2 My(by+ b3) + Mfy = — Poly?(k — #)

.

— Pyl2(2k— 342+ /8) — 651("81"/‘%"3;/’*). (8)
2 3

which is the important theorem of three moments applicable to

any two consecutive spans of a continuous girder.

If all the supports be on the same level, as is usually the case,
the term containing E7 reduces to zero. If there be several
loads on the spans the sign of summation is to be written before
the terms including the loads; thus,

My + 2 My(ly + by) + My = — TP Lk — 2P)
— 2Pyl (2k— 382+ #), (9)
is the theorem for concentrated loads and level supports.

If the two spans be loaded uniformly with w, and w; per
linear unit, the signs of summation are to be replaced by those
of integration between the limits o and /;, and o and /;; also
P, is to be replaced by w,d(%/,), and Py by wgd(%4l). Then
(9) reduces to

Mly+2 My(ly + b)) + Mty = — Fwyls® — Fwl,  (10)
which is the theorem of three moments for uniform loads and
level supports, as first announced by CLAPEYRON.

By means of the theorem of three moments an equation may
be written for each' support of a continuous girder, except those

at the ends where the moments are zero. There will be as .

many equations as there are unknown moments, and from these
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the values of M,, My, etc., are derived. For instance, consider-
ing the four spans of Fig. 2 where a single load is in the span
/,, the theorem for the support 2 is written by diminishing each
subscript in (9) by unity, and making #/; =0 and P, =o0; thus
2My(h + by) + Myly=— Pl (2k — 3 + #°).
Again for the support 3 the theorem is, since Pg=o0,
Moly + 2 My(ly + bg) + M fy = — Pk — B),
and for the support ¢ it is, as there are no loads on /; and /,,
My + 2 M (lg+1,)=0.

From these three equations the values of A7, My, .M4 are
obtained by solution for any given lengths of span. The sim-
plest case is when the spans are all equal; here the solution
gives

%=—.‘;’3’(26k—459+ 19 5, M3=—%(2k+3k’—5k3),
M4=—7}Ms’

which are the bending moments at the supports caused by the
load P in the second span. If the load is at the middle of the
span, the value of % is 0.5, and by giving different values to 4
the load may have all required positions in the span.

Prob. 3. A continuous beam of four equal spans has a load
P on the first span. Show that the moment 47, = — }—)l(k — 8),

56
and that the reaction R;= ;’-;—(56 — 71k + 15 48).

ART. 5. REeactions ForR Two EqQuaL Spans.

By means of the theorem of three moments in Art. 4, the
moment 7, at the middle support of two continuous spans is
at once found; then by Art. 3 the reactions of the supports are
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derived; and lastly, by Art. 2, the shears and moments for
every -section throughout the beam may be ascertained. All
supports are taken on the same level.

Cask I, A Single Load. — Let the load 2 be in the first span
at a distance £/ from the left support, / being the length of each
span, and £ any fraction less than unity. Then since M, =o,
Mgy =0, and P; =0, the theorem in (Q) of Art. 4 gives

My=—}PI(k - ),
And by the method of Art. 3 the reactions are
Ri=+P(1—k)—}P(k—#),
Ry =+ Pk + L P(k -4,
Ry=—}P(k—B),

the sum of which is equal to 2. If the first span were a simple
beam the reactions would be R, = /P(1 —£) and R, = P#, but
here it is seen that R, is less and that R, is greater than for the
simple beam. The shear and moment diagrams for this case
are shown in Fig. 4, the shear being zero and the moment
being a maximum under the load. An inflection point, where
the moment is zero, lies between the load and the middle support.
If x; be the distance of the inflection point from the support 1,
the equation of moments with respect to this point is

Ry, — P(x;— k/)=o0, whence z,= _4/

A 5 — A2

Since the value of # lies between 0 and 1, it is seen that the
value of z; lies between 4/ and /, that is, the inflection point is
always located on the last fifth of the span.

Case II, A Uniform Load on One Span.— Let 2 be the
load per linear unit over the first span, the second span being
"unloaded. The theorem of three moments in (10) of Art. 4
gives M, = — {5 w/? and then .

S
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Ry =+ {swl, Ry=+{}wl, = Ry=—Jgwl

- Here zero shear and maximum moment occur at x = 1g /» while
the inflection point is at /. When x is less than {/, the upper

Fig. s. Fig. 6.

part of the beam is in compression and the lower in tension; -
when x is greater than }/, and also in the second span, the
upper part is in tension and the lower in compression.

Case III, Uniform Load on Both Spans. — For this case it
is easy to find, by the same method as before,

My=—}wl, R,=Ry=+3}wl, Ry=+32wl

Zero shear and maximum moment occur when R — wr = o,
that is, for x=4/; while the inflection point occurs when
Rx — }w2®=o, thatis, for ;= 4/ The distribution of shears
and moments throughout the beam is shown in Fig.'6.

Prob. 4. If a load P be on the second span at a distance 4/
to the left of the support 7, show that the reactions are

Ri=—1P(k—F), Ry=+ Pk+ 3 P(k— ),
Ry=P(1—Fk)—}Pe— ),
‘and draw the shear and moment diagrams.
Prob. 5. A load of 1600 pounds is at the middle of the first
span and another load of 800 pounds is at the middle of the

second span. Show that the reactions are R, = 575, R, = 1650,
R;=175 pounds. Draw the shear and moment diagrams.
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ART. 6. REACTIONS FOR THREE SPANS.

Continuous bridges of three spans usually have the end spans
equal in length and shorter than the middle span. Continuous
draw bridges, on the other hand, often have a middle span which
is much shorter than the end spans. Let / be the length of
each end span, and 7/ the length of the middle span, 7 being
a number either greater or less than unity. Let all supports
be on the same level.

Case I, A Load 2 on End Span. — Let the load P be on the
first span at a distance £/ from the left support. By the same
method as before, the reactions are found to be as follows:

2422
m

Ry=P(1—F)— Pk — ),

R2=Pk+Wp(k_ks),

Ry==2F3247 p_ ),
&=+£P@—H}

in which, for abbreviation, 7 represents the quantity
. 4(1 + np — n2

In Fig. 7, the distribution of shears and moments for this case

1?
z 2 2 £ 71 2 2 _£

N

is shown. These formulas also give, by changing the sub-
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scripts, the reactions for a load on the last span at a distance
#/ from the support 4 In computing reactions, the table at
the end of this chapter will be of service; for example, if
n=1, then Ry=— F P(#—#8); now, if £=o0.52, the table
gives £— £ =0.3794, and hence R;=— 0.1518 P.

Case II, Uniform Load on End Span. — Let the first span
be covered with the uniform load w/ Then the reactions are
found to be . ’ .

. R1=6+I4"+6”2w1, R3=—2+3”+”2wl,
4m 4mn
R2=2+I3”+18”2+6n3w1, R4=Lwl,
4mn 4m

in which 7 denotes the same quantity as before. If #» =1, the
three spans are equal and =15, then R, =+ 3§ w/, R, =
+83wl, Ry=—Fwl, Ry=+ggwl A diagram of shears
and moments for this case is seen in Fig. 8.

Case III, Load P on Middle Span.—Let the load 2 be
in the middle span at a distance #(»/) from the support 2.
From the theorem of three moments, the moments at 2 and 3,
due to this load, are

My= L 4 2y 2k 384 )= (k- B,

#y= =210 1 2k — )= m(2k— 3884 1),

and from these the reactions are found to be

Ry=2, Ry=pP(1— -2y Yozl

M, M, M,— M,
=2"2 = 73 _-"3 72
R, 7 Ry;= Pk 7 v

in which » has the same signification as in Case I.
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Case IV, Full Uniform Load. — For a load of w per linear
unit over all three spans, the reactions of the supports are

17T 4(z +37)
R,=Rs=5+l°”+6”2+”swl,
4(2 + 37)

and from these the shears and moments at all sections can be
determined. If the spans are of equal length R, =R, = 4 w/,
and Ry, =Ry =1} wl.

Prob. 6. Deduce the formulas for the reactions of a con-
tinuous beam of three spans due to a uniform load in the
middle span, and draw the shear and moment diagrams. If
the spans are equal, show that R, =R, = —ly w/, and R, =R,
=+3}wl.

ART. 7. LoADINGS FOR MAXIMUM SHEARS.

In order to be able to compute the maximum and minimum
stresses in the web members of a continuous truss, it is neces-
sary to know the positions of the live load which give the
largest positive and negative shears at any designated section.
The shear V is the algebréic sum of all the external forces on
the left of the section, and may be either positive or negative
according as the reactions on the left of the section exceed or
are less than the loads.

Two Spans.— For two equal continuous spans the shear at
any section in the first span is

V=R, —2P,
where 2P denctes the sum of all the loads between the section
and the left end. Here the reaction R, is positive for all loads

on the first span, and negative for all loads on the second span.
(Art. 5.) Hence, the largest positive shear at a section in the
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first or left-hand span, will occur when the live load extends
from the section to the middle support, as in Fig. 9. Also the
largest negative shear will occur when the live load extends

7 ! ) ? T 'gl 2 3

Fig. 9. Fig. 10.

from the section to left support, and also covers the second
span as in Fig. 10. The live load being placed in these posi-
tions and reactions found, the live load shears are computed.

THREE Spans.— For three continuous spans, the reaction R,
is positive for all loads in the first and last spans, and negative
for all loads in the middle spans, as the formulas in Art. 6 show.
The shear for any section in the first span being R, — 22, it is
easy to see that Fig. 11 shows the arrangement of live load for

o, o mm
¥ '3 5§ 3 FA <z 3 3

Fig. 11, Fig. 12.

largest positive shear, and Fig. 12 that for largest negative
shear in the first span.
For a section in the middle span the shear is expressed by
V=R, + R,— 2P, — 2P,
where 2P, denotes all the live loads on the first span, and =P
.those on the middle span at the left of the section. Here. it is
seen upon reflection that the largest positive shear occurs when
the first span is loaded, and also the segment between the sec-
tion and support 7, while the largest negative shear occurs
when the last span is loaded, and also the segment between
support 2 and the section. ° _
For a continuous truss the loads are applied at the different

panel points, and the reactions due to each load being com-
puted the reactions caused by any combination of loads are
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found by addition, and then the shears are deduced. A
numerical example is given in Art. 9.

Prob. 7. What arrangement of live load will give the largest
negative value of R, for the case of two spans, and also for the
case of three spans? What arrangement will give the largest
positive value of R,?

ART. 8. LOADINGS FOR MAXIMUM MOMENTS.

In order to compute the maximum and minimum stresses in
the chord members of a continuous truss it is necessary to
know the positions of the live load that give the largest positive
and negative moments for each member. The bending moment
M at any section is the algebraic sum of the moments of the
external forces on the left of that section with respect to a
point in that section. For a section in the first span /; at
a distance x from the left support, the moment is

M=Ryx—3P(x— kly),

and M may be either positive or negative according as the
moment of the reaction is greater or less than the sum of the
moments of the loads.

Two Spans.— For two equal continuous spans the reaction
R, is positive for all loads on the first span, and Fig. 4 shows
the distribution of moments for a single load. The inflection
point is always, as shown in Art. 5, on the one-fifth of the span‘
nearest the support 2. Thus the moment due to any load P
is always positive for a section on the four-fifths of the span
nearest 7, but for a section on the one-fifth nearest 2 it may be
either positive or negative. For these two parts of the span
there are hence different loadings for maximum moments.

Case I.—Let 7 be a point whose distance from the left '
support is four-fifths of the span. Then every load on the first
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‘'span causes a positive moment at all sections on the left of
7, and every load on the second span causes a negative moment.

- X X 2
Tlewgosd 2 3 Tz t 2 3
Fig. 13. Fig. 14.

Hence the largest positive moment for any section on the left
of 7 occurs when the live load covers the first span, as in Fig. 13;
and the largest negative moment occurs when it covers the
second span, as in Fig. 14. These are the live load loadings
for maximum and minimum moment when x is less than 4/

Cask II.— For a section on the right of 7 a load P will pro-
duce a positive moment if its inflection point is on the right
of the section and a negative one if it is on the left. The
position of P causing zero moment in the section is given by
Ryx — P(x — kl)=o0, or inserting for R, its value from Art. 5,
and replacing 4 by 4, there results,

k, =\/5 f4£’

which gives the limiting positions of the live load. Hence the
largest positive moment in the section occurs when the live
load extends from the end of the distance £,/ to the support 2,

o B

Y sy X Ty a3
Poregpenln] 2. 3 Lol 2 3
Fig. 15. Fig. 16.

as in Fig. 15; and the largest negative moment occurs when
the live load covers the distance £,/ and the second span, as in
Fig. 16. These are the loadings for maximum and minimum
moments when x is greater than 4/

For example, if x =0.8/, then 4,=0 which gives the same
loadings as the cases of Figs. 13 and 14. If x=o0.9/, then .
ky=0.745. If xr=1/ then ky=1, and there is no live load for
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Fig. 15, while the live load covers the whole truss for Fig. 16;
thus the greatest negative moment over the center pier occurs
when the bridge is fully loaded.

THREE SpaNs. — By a similar method of reasoning the follow-
ing distributions of live load may be deduced for the different
sections. Here, as in Art. 6, the length of each end span is /,
and the length of the middle span is #»/. The diagrams for the
eight different cases should be drawn by the student.

First Span. — For the first span at the left end there is as
before a critical inflection point ¢ which divides the span into
two parts, and there are different loadings for each part. The

formula
="
m+2n+2

gives the distance of this point from the left support, # being
4(1 + n) — n?

When x is less than 7, the largest positive moment occurs
when the live load covers the two end spans, and the largest
negative moment when the live load covers the middle span.

When x is greater than 7 there is a limiting distance £/, as in
the case of two spans, and the value of £, is

'é0=\/m+2n+2_ m_ L
2n+2 2n+2 x
Here the largest positive moment occurs when the live load
covers the distance from the end of £,/ to the support 2, and
the last span is also loaded. The largest negative moment
occurs when the live load covers the distance 4,/ and also the
middle span.

Middle Span. — There are two points 7, and 7, which divide
the span into three parts, and there are different loadings for
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each part. The distances from the support 2 to these points are

%l  qy=2%2%,
2437 2+3n

zl=

If the three spans are equal, z=1 and 7, =1}/ 7, =4/

When x is less than 7 there is a load limit £,(»/), and the
value of £, is one of the roots of the equation

[(67n+4 7:’)?—3—2 n]B2—[(3n+2 ’12)§—3—4 n]k—m?:o,

the largest positive moment occurring when the live load covers
the distance £,(»/) and also the last span, while the largest
negative moment occurs when the live load extends from the
support 7 to the end of the distance 4(#/), and also over the
first span.

When the section is on the middle part, or when x lies
between 7; and 7,;, the largest positive moment occurs for live
load over the entire middle span, and the largest negative
moment for live load over the two end spans.

When x is greater than 7, no special rules are necessary, as on
account of the symmetry of the girder, computations need be
carried no further than the center of the middle span.

Prob. 8. A continuous girder of two equal spans, each 30 feet
long, has a dead load of 250 and a live load of 500 pounds per
linear foot. Compute the maximum and minimum bending
moments at the section in the first span, where *r=0.8 /.

ArT. 9. A Two—SPAN WARREN TRuss.

A highway deck truss of the Warren type is continuous over
three level supports forming two spans, each 50 feet in length.
The panel length is 10 feet and the depth of truss 6 feet.
The dead load per linear foot per truss is 500 pounds, the snow
load 200 pounds, and the live load 1000 pounds, all being taken
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on the upper chord. It is required to compute the maximum
and minimum stresses in all members.

The panel loads and stresses will be expressed in units of one
thousand pounds, and this unit will be called a kip, which is
an abbreviation for kilo-pound. - The dead panel load is 5000

A B C D E _F E Dp C B 4«

Ffae & ¢ d eZe d ¢ § aF
Fig. 7.

pounds, or § kips, the snow panel load 2 kips, and the live

panel load 10kips. At the end apexes 4 and 4’ the panel loads

are one-half these values, but need not be considered except for

the end posts. .

The chords being horizontal, the stress in any web member
is equal to the shear upon it multiplied by the secant of the
angle which it makes with the vertical; this secant is

V524 62/6 = 1.302.

The stress in any chord member is equal to the bending moment
divided by the depth of the truss. To obtain the maximum and
minimum web stresses, it will be best to compute the maximum
and minimum shears and then multiply these by 1.302. Like-
wise for the chords, the maximum and minimum moments will
be found, and then these will be divided by 6 feet. For the
live load, the reactions due to each panel load are first com-
puted by the formulas of Art. 5, Case 1. For the panel loads
at B, C, D, E, the values of £ are 0.2, 0.4, 0.6, 0.8, and in finding
the values of # — 4% the table in Art. 13 may be used. The
reaction R, for a load at B’ is evidently the same as the reaction
R, for a load at B, and similarly for loads at (', D', £/. Thus
are found

For load at B C D E E! D c B
Reaction Ry = + 7.52 + 5.16 + 3.04 + 1.28 —o0.72 —0.96 — 0.84 — 048
Reaction Ra =" + 2.96 + 5.68 + 7.92 + 944 +9.44 + 7.92 + 568 + 2.90
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For a load at F, the reactions R, and Ry are 0, and R, =+ 10;
hence this load produces no stresses in the truss.

The largest positive and negative shears due to live load are
now computed, the live load being placed in the positions shown
by Figs. 9 and 10 in Art. 7. For instance, for Cc the largest
positive shear occurs when only the loads D and £ are on the
truss; the reaction due to these is + 4.32, and thus V= + 4.32
kips. The largest negative shear for Cr occurs when all loads

SHEARS. Aa Bs Ce Dd Ee
Live load + + 17.00 + 9.48 +4.32 + 1.28 o
Live load — — 3.00 —548 | —10.32 | —17.28 | — 26.00

Total + 14.00 + 4.00 —6.00 | —16.00 | —26.00
Snow load + 2.80 + 0.80 —I.20 — 3.20 — §.20
Dead load + 7.00 + 2.00 — 3.00 —8.00 | —13.00
Max. shear + 2680 | + 12.28 —14.52 | —28.48 | —44.20
Min. shear + 4.00 — 348 +1.32 —6.72 | —13.00
Max. stress + 349 + 16.0 —18.9 —37.1 —57.6
Min. stress +5.2 — 4.5 + 1.7 — 8.7 —16.9

except D and £ are on the truss; the reaction due to these is
+ 9.68, and then V' =+ 9.68 — 20 = — 10.32 kips. The largest
live load shears are thus computed and arranged in the first
and second lines of the above table. The algebraic sums
of these, given in the third line, are the shears due to a uniform
live load over the entire truss. One-fifth of these totals give
the shears due to snow load, and one-half of them give the
shears due to dead load. Then, remembering that the dead
load must act, and that the snow and live loads may act either
together or separately, the maximum and minimum shears are
found. These multiplied by 1.302 give the maximum and mini-
mum stresses in kips, + denoting tension and — denoting
compression. The stresses for the members Ba, Cb, Dc, Ed,
Fe are the same as those for Aa, Bb, Cc, Dd, Ee, respectively,
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" but with contrary signs. The signs of the stresses will gener-
ally be apparent upon reflection, but if not they can be found
from the signs of the shears by the following rule:

A positive shear causes ;tensmn } in a diagonal slop-

d d compressionj
ing %ugzgrdar :» away from the left-hand abutment; a

negative shear causes the reverse.

For the chord stresses a similar method of tabulation will be
used. The largest possible moment for CD due to live load is
when the first span is fully loaded, as in Fig. 13 of Art. 8; the
reaction R, due to these loads is + 17.00, and M =17 X 25 —
10(15 + §)= + 225 kip-feet. For EF the center of moments is
at ¢, which is more than four-fifths the span, and thus the load-
ing is as in Fig. 15; here £, = 0.74, which shows that only the
load £ should be on the truss for largest positive moment, and

Mowents. AB cD EF ab cd ez
Live load + +85 | + 225 +8| +170]| + 210 o
Live load — —15| —75! —178] —3| -—90| — 300

Total +70| +150] —170| +140| +120| — 300
Snow load + 14 + 30 - 34 + 28 + 24 — 60
Dead load + 35 +75 -85 + 70 +60 | — 150
Max. moment + 134 | + 330 . 297 | +268 , +294| —s5I0
Min. moment + 20 o - 77 + 40 —30 | —1I50
Max. stress —223| —650 | +49.5| +44.7 | +49.0| —8s5.0
Min. stress - 3.3 o +128| +6.7| +50]| —25.0

that all loads except £ are on the truss for largest negative
moment. For ¢2 both spans fully loaded give the largest
negative moment. The live load moments being computed
are arranged in the first and second lines of the above table.
The algebraic sums of these give the moments due to live
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load over the entire span. One-fifth of these totals give the
moments due to snow load, and one-half give the moments
due to dead load. Then, noting that dead load always acts,
and that live and snow loads may act, the maximum and
minimum moments are readily found. These are in kip-feet,
and dividing them by 6 feet, the maximum and minimum chord
stresses result. The signs of these stresses may always be
found from the signs of the moments by the following rule:

A positive moment causes% zzxrlrfg)rr;ssion }in the% Lol;‘;gr }

chord, while a negative moment causes the reverse.

Prob. 9. Compute the maximum and minimum stresses in
the members BC, DE, ra, bc, de, 1 A, 2 F, for the above data. .

ART. 10. A THREE-SPAN PRATT TRUSS.

A railroad continuous truss has three spans, the end ones
being 75 feet and the middle one 18 feet. The middle span
consists of one panel 21 feet in height. In each end span
there are five panels, 15 feet long, while the depths of the truss
at 4, B, C, D, E are 17, 18, 19, 20, 21 feet, respectively. The

4 c E . ’ 7
'/ \ / pd N\,
/ \ /’ S
7 a &6 ¢ d F S5 & & & a

Fig. 18,

dead load per linear foot of track is 1200 pounds, of which
three-fourths is on the lower chord. The live load is 3600
pounds per linear foot of track, which is regarded as an equiva-
lent for full locomotive load. The bridge having two tracks,
the dead panel load is 18 kips, of which 4} kips is on the upper
chord, while the live panel load is §4 kips, one kip being 1000
pounds. The truss being of the Pratt type, the diagonals
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can take only tension, and the broken diagonals are those not
stressed under dead load.

The reactions due to the live loads are first to be computed
by the formulas of Art. 6, Case I. Here »=18/75=0.24,
m =6.0028 or 1/m =0.16413. Then, as P is 54 kips, the
formulas become

R, =54.00(1 — k) — 21.98(4£ — &%), Ry3=—102.57(k—A),

R, =54.00 £ — 75.08(% — ), R,=+2.13(k— B).

In computing the reactions for different values of 4 the table
in Art. 13 will be found useful. For a load at a the value
of £ is 0.2, then R;=438.98, R,=+ 34.30, R;=—19.69,
R,=+40.41; the reactions for a load at &' are the same as
these in reverse order. The reactions R, and R, for each load
are, in kips,

Load at a I ¢ d d d ¥ a'

Reaction A1 =+38.98 +25.01 +13.16 + 4.47 + 0.61 + 082 + 0.72 + 041

Reaction Ro=+34.30 +62.73 +7941 +78.46 —29.54 —39.39. —34.46 —19.69
The sums of these give the reactions R, = +84.18, R,= +131.82,
for a uniform live load. Since the dead load is one-third the
live load, R; =4 28.06 and R,= +43.04 are the dead load
reactions.

As this truss has an inclined upper chord the method of the
last article must be modified for the web members. The method
of moments will be used for all members except the end post
and the diagonals in the middle span. A section being passed
cutting a member and two others, the center of moments for
that member is at the intersection of the other two. To abbre-
viate the work the panel length will be called p and all lever
arms be expressed in terms of p; thus for ¢4 the center of
moments is at 2 and the lever arm is 22 p; for (¢ the center
of moments is on the line of the lower chord at a distance 16 p
to the left of the support z, and its lever arm is 19 p. When
the equation of moments for a member is stated, p appears in
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each term and cancels out. In writing the equations it is to
be noted that the full dead load always acts, but the live loads
to be used for a web or chord member will be those giving the
largest shear or moment, as deduced in Arts. 7 and 8.

For the main diagonal Dc the maximum tension .S occurs
under the largest negative and the minimum tension S’ under
the largest positive shear. The first happens when the live
loads a, 4, ¢, are on the truss, and the second when all live loads
except these are on the truss; the live load reaction R, is
+ 77.15 for the first case and + 7.03 for the second. The
center of moments for Dc is at the point where the two chords
intersect and the lever arm is 15.2 p. The equations of mo-
ments for the two cases are

—(77.15+28.06)16p+(54+ 18} (17p+18p+19p)—S X 15.2p=0,
—(7.03+28.06)16p+18(17p+18p+19p)—S' x 15.2p=0,
whence S=+ 145 and S’ =+ 27 kips are the maximum and

minimum tensions-for Dc.
In the same manner for (4 the equations of moments are

—(63.99+28.06) 169 + 72(17p2 + 182) — S X 14.13p =0,
—(20.19 + 28.06) 16 + 18(17p + 18p) — S’ X 14.13p =0,

whence S =+ 74 and S’ is negative. But as a diagonal cannot
take compression the counter diagonal Bc is needed in this
panel. The maximum tension for B¢ is given by the last equa-
tion, replacing the last term by + S’ x 13.5 p, from which
S’ = + 10, while the minimum tension for both Cé and Bc is
zero.

The following are the stresses for the diagonals in kips:

i Ar | Ba cb | De | Ed I E'z l A8 Be
Maximum — 150 +12| +74'+ r45'+zzo +159| +64| + 10
Minimum —37] o | o +271 +52| o o o
S 1
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The stresses for the verticals are found in a similar manner.
For Dd a section is passed cutting it and the two chords, and
the upper panel load at D is thus on the left of the section.
The center of moments is at the point where the chords inter-
sect, and the two equations of moments are

—105.21 X 169+ 72(17p+ 18 p+199)+ 44 x 209+ S X 20p=0,
—35.00X 16p+18(172+ 18 p+19p)+ 44 x 20p+ 5" x 20p=0,

whence S= —115 and S'= —25 kips. For B4 and (¢ the mini-
mum stress is simply the upper panel load. For Aa the stress
is ‘always tension, the minimum being the lower panel dead
load. The final stresses for the verticals, in kips, are then as
follows :

Aa Bb Ce Dd Ez
Maximum + 37 —13 — 6o — 11§ —173
Minimum + 13 -4 —4 —25 — 44

The positions of the live load causing the maximum and mini-
mum chord stresses in the first span are stated in Art. 9. The
critical point 7 is found to be §3.3 feet from the left support or
in the panel ¢4, and for all centers of moments preceding this
the largest positive moment occurs when the two side spans
are fully loaded. The reaction R; due to dead and live loads
for this case is + 112.24, the shear in the second panel is
+ 30.24 andthe shear in the third panel is — 41.76; the
diagonals A4 and C/ are hence in action. The center of
moments for the upper chords A8 and B(C is then at 4, and
the equation of moments is

+ 11224 X2p—72 Xp+ S X 1.197p =0,

whence S = — 127 kips is the maximum compression in 4C,
while the minimum which occurs under dead load is one-fourth
of this.
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For the chord cd whose center of moments lies beyond ¢, the
distance x to the center of moments is 60 feet or //x = 1};
then £, = 0.62, so that the loads a, &, ¢ constitute one system
and the remainder of the live loads the other system. The
equations of moments for the two cases are

(77.15 +28.06)4p — 72(3p + 20 +29)— S x {2 =0,
(7.03+28.06)4p —18(32+ 20 +9)— S' x §2p=0,
whence — 8.3 and + 24.3 are the two limiting stresses for cd.
The same equations with a different lever arm give the stresses

for DE. The maximum stresses in 42, 27, EE', occur when
the truss is fully loaded.

The following are the final stres;es for the lower chords:

1a ab bc cd d2 l 23
Maximum +99 +99 +95 +24 | —113 | +113
Minimum +25 +25 + 24 -8 —28 —28

It will be noticed that the middle span of this bridge is very
short, so that an effective negative reaction of 79 kips may
occur at 2 or 3 when the last or first span is fully loaded. The
truss must hence be fastened down at these supports, so that
these negative reactions may take effect and produce tension in
the verticals £2 and 3 £’; if this is not done the truss may
rise and become one of two spans under partial live load. This
truss is, in fact, that of a swing draw bridge, and it will be
further discussed in Art. 18. For a fixed continuous truss the
middle span should be slightly longer than the side spans in
order to give the best conditions for economy of material.

Prob. 10. Check several of the above stresses, and also com-
pute those for the upper chord. Show that the maximum ten-
sion for the middle diagonals £’ 2 and £ 3 is 104 kips.
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ART. 11. SUPPORTS ON DIFFERENT LEVELS.

Let an unloaded continuous girder, without weight, and
originally straight, have its supports on different levels. The
theorem of three moments in Art. 4 becomes

Myly +2Mg(ly + L)+ My ly = _551(/’8 ;‘ /‘2+./lsl—/l4)
2 3

where 4,, %3, /,, denote the elevations of the supports above
an assumed datum plane. If the weightless beam have stiff-
ness, represented by E, the theorem shows that moments obtain
at the support, and hence stresses occur at every section. This
is because exterior forces are required at the supports to make
the elastic curve pass through those points of supports. Thus
a support must not only prevent the beam from falling but
from rising, in order that the theory of continuity developed in
Art. 4. may be valid. ‘

Practically no girder is without weight, and this usually
serves to hold it down at the supports under a partial live load.
If, however, a negative reaction can occur at any support, the
girder must be anchored to that support so as to prevent it
rising, and the maximum stress on the anchor rod is equal to
the greatest negative reaction. In the last article a practical
case of this kind is seen.

If a girder be built on level supports, and one or more of
them be lowered, the moments at the supports due to such
depressions may be found by the above theorem. For example,
let a girder of four equal spans have its center pier lowered a
small distance /Z below the level of the others, and let the girder
still touch all the supports. The theorem of three moments,
written for the supports 2, 7, 4, gives three equations containing
the three unknown moments at these supports; thus,

6 Elk

4 My+ My= — 72

?
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J{’ + 4Ms + M‘ = + ‘12—152&’
6 Elk
M8 + 4M4 = — 72 ’
from which the moments at the supports are
_ _ _18Elk 30 Elk
My=M,= — 712, M=+ YR
and the reactions are
_18Elh 66 Elk __96EIk
Ry =Ry = 5 R,=R,= + 7 Ry = 278

and from these the stresses due to depression Z may be com-
puted. Let the span / be 100 feet, the girder a truss whose
depth is 10 feet, and chord section 0.14 square feet, let £ =
4 320000000 pounds per square foot, and ~ = 0.05 feet. Then
the moment of inertia of the chord sections is 7= 7 feet*, and
M, = — 388 800 pound-feet which is the increase in the moments
at the supports 2 and 4, and R, = — 3888 pounds which is the
negative reaction due to the depression of the middle support
by o.05 feet. The upper chord stresses at 2 and ¢ are hence
increased by 38 goo pounds and the lower chord stresses de-
creased by the same amount. If the middle support be lowered
o.1 feet the change in these chord stresses will be 77 800 pounds.

It is thus seen that a slight change in level of one of the sup-
ports may produce great changes in the stresses in all parts of
the girder, and that such changes in level are liable to injure or
even to cause the destruction of the girder. This is the strong-
est objection to the use of fixed continuous spans.

Prob. 11. A continuous girder of two equal spans is loaded
uniformly with = per linear foot. If the reaction at each end
is § w/, find how far the mlddle support is depressed below the
end supports.
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ART. 12. ADVANTAGES AND DISADVANTAGES.

When a bridge is to be built across a river and several spans
are required, it is possible to erect either a continuous structure
or several simple ones. The arguments in favor of the con-
tinuous system are as follows:

1. The simplicity of construction over the piers is greater,
since portals are not needed, and when the piers are skewed-
many expensive details are avoided.

2. The deflection under live load is less, and the stiffness is
greater than for simple spans, the injurious effect of oscillation
being thus diminished.

3. When false works are difficult or expensive, a continuous
truss may be built out from the shore, panel by panel, as with
cantilevers.

4. The upper part of the piers may be somewhat smaller for
the continuous system, since less bearing surface is required
than for the two ends of simple spans.

5. The amount of material required for the continuous system
is less than for the simple spans, the saving in material being
B B often as great as twenty-five
[l per cent. This saving occurs
o,
QI

A i X" mostly in the chords, and is due
" A ~ to the smaller bending moments.
Fig. 19. Thus in Fig. 19, if AC and CA'

be two simple spans, the bending moments due to uniform load
are always positive, and are shown by the parabolas 4BC and
CB'A'. 1f a continuous truss A4’ be used, the bending mo-
ments are part positive and part negative, and are shown by the
parabolas ADE and ED'A'. 1f / be the span and w the load
per linear unit, reaction R, is } w/ for the first case and § w/
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for the second. The areas included between the parabolas and
the base AC are then

Ay= [ (Ryx — pustdr = Jp i = i,
Ay= [ (Ryx — sty S (Ryx — Janydr = Py i,

The area included between ABC and AC is hence §%ths of
those between ADE and AC. If now, it were possible to
design the chords so that their sections are proportional to the
bending moments, then the chords of the simple truss would
contain 118 times as much material as the continuous one.
It is, however, not practicable to do this, and in fact for
short spans it is best to make the chords of uniform section
throughout.

The objections to the continuous system for truss bridges may
be summarized as follows :

1. The theory is not strictly correct, as it supposes the
moment of inertia /7 to be constant, whereas in a truss it is
subject to variation. The error due to this cause rarely gives
errors in stresses greater than six per cent.

2. Many of the chord members are subject to alternating
stresses of tension and compression which require low unit-
stresses to resist them, and hence the saving in material is
much less than pure theory indicates.

3. The computation of stresses is much more difficult than
for simple trusses, and the erection is made by building out
panel by panel; additional computations are needed, and extra
material required to resist the erection stresses.

4. Changes of level in piers and abutments cause great
changes or reversals of stress. This objection, as shown in
Art. 11, is a very serious one, and by reason of it, more than all
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others, the continuous system is little used except for draw
bridges. It is, however, not important that the piers should be
exactly on the same level when the bridge is built, provided that
the false works be so arranged that the profile of the unstrained
truss agrees exactly with that of the piers.

The longest and almost the only continuous truss bridge in
America, exclusive of draw bridges, is the Lachine bridge over
the St. Lawrence river near Montreal, built in 1887 by the
Dominion Bridge Company, It has four spans, the two side
spans being 269 feet each and the two others 408 feet each.
It presents a beautiful appearance, as the side spans are deck
and the others through, the transition being made by graceful
curves. For description of the method of computation and
erection, see Engineering News, Oct. 1, 8, and 15, 1887.

Prob. 12. Find the maximum bending moments in the
Lachine truss, the dead load being 1300 pounds per linear
foot on the side spans and 1650 on the central spans, while
the live load is 1500 pounds per linear foot.

ART. 13. GENERAL FORMULAS.

The following general formulas for the moments of continu-
ous girders on level supports were deduced by MERRIMAN from
the theorem of three moments and first published in the
London Philosophical Magazine for September, 1875.

Let the number of spans be s and the supports be numbered
1,2, 3,5, 5+ 1, as in Fig. 20, the lengths of the spans being

;‘..k‘:... P
R S s 4
X 7\ .Y r-)
Vg 2 s

-3
3 ’ r+r (=4
Fig. 20.

-3
S+7

l, ly, -+ /,. Let the span /. have the single load P and the uni-
form load w/, and let it be required to find the moments at the
supports due to these loads.
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Let ¢), ¢y, ¢4y and &}, dj, --- d,,, be two series of nunibers
depending only on the lengths of spans as follows:

a=0, =11, @=0, dy=+1,
12 / 0-1
G=—2 cs—(Z‘s‘*"a)l—’» dy=—2d;—(2 ds+d’) ‘-l
3 "*
C5= '—‘2(:4—(2 C4+£3)%, d =—2 d4 (2 d4+d3) ‘—:
4 b

cc+1lc =—2 c,l‘—(Z Cs +£z—l)lt—1‘ dtll =-—2 dtll - (2d: +dc—l )12

Let A and B be quantities depending on the given loads,
namely,

A=Pl2(2k—3k+ )+ wl3 B=Pik—FB)+}wl
Then for any support 7 the formulas are

when <7+ 1, M, = 4y 19 A+d,_,,B) (1)

7

when #>7, M, = “';7 (¢;A + ¢y B), (2)
Cot

the first giving the moment at »# due to the loads in the span /,

for all supports on the left of /., and the second for all supports
on the right of /.

For example, take the case of foqr spans, where /, =/, =/,
ly=1l3=4/ Here, the series for ¢ and & give:

=41, cg=—23.5, g=+13, Gly=—156/

dy=+1, dg=-35  d,=+13 dfj=—756/L
Now let it be required to find the moments at the supports due
to a load P in the second span. Then =2 and s =4, and
making 7 = 2, the formula (1) gives,

134A—3.58 13Pl
67

35P/

M,=— (24— 3B+ B)+32"(k— B).
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Again, making n= 4, formula (2) gives,

+= 561

/
%(2&—3k’+k3)+sspl

(£~ #).

And again, making # =3 in (2), the moment M is — 3.5 M.
Now for any value of # the moments are readily computed by
the help of the table given below; thus for £#=0.47 the table
gives (24— 3424 #%)=0.3811 and (& — #%) = 0.3662, whence
M, = — 0.06558 P, My = — 0.05603 P/ and M, = + 0.01601 PL.

The above formulas apply also to continuous girders with
ends fixed horizontally. If the left end is fixed, make /=0
and let s — 1 be the number of spans, then 47, is the moment

- at the left end. If both ends are fixed, make /;=o0, /, =0,
and let s — 2 be the number of spans, then A, and A/, are
the moments at the fixed ends. For example, take the case of
two equal spans with both ends fixed. Here ¢q=dp=+T1,

=dy=—2,¢,=dy=+47, ¢/y=dJy=—12/. Now let the
first span /; be covered with the uniform load w/. Then from
(1) the moment at the left fixed end is M, = — 5 wi? from (2)
that at the middle support is M;=— EII wl? and that at the
right fixed end is M, = + g5 w/2

For any unloaded span the shear 7, at the left end of that
span is given by
Vn._ MH.I[ M (3)
and the shear and moment at any section distant x from the
support #z are found by

V=", M=M,+ Vi, (4)

and thus the stresses in all unloaded spans due to the loads
in /. may be computed.

For the loaded span /. the shear V, at the right of the support
r is given by
JWr+l

V.= 2

My P(1— B+ Y,
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and the shear at any section distant x from 7 is

V="V, — wx,
V=V,—P—wzr;

while the moment for any section is
M=M,+ Vix— P(x— kl,)— } wr?,

and thus the stresses in the loaded span are found.

for x<4/,
for x>#/,

fof x <k,
for x> £/,

35

(5)

)

By the successive application of the formulas of this article
the complete investigation of all continuous girders on level
If the girder is horizontally restrained or
fixed at both ends, they will also apply by making /; =0, /; =0,
and letting s — 2 represent the number of spans.

supports is possible.

VALUEs OF (£ — %) AND (2&—3 42 + /%)

Read down for (£ — £2).

0

1

3

.0000
0990
.1920
.2730
.3360

» OO

-3750
.3840
-3570
.2880
1710

[@uqau

0100
1087
2007
2802
3411

3773
3830
3521
2786
1564

0200
1183

2872
3459

3794
3817
3468
2686

1413

0300
1278
2178
2941
3505

3811

3410
2582
1256

0399
1373
2262

“3007

3548

3825
3779
3348
2473
1094

0499
1466
2344
3071
3589

3836
3754
3281
2359
0926

0598
1559
2424
3134
3627

3844
3725
3210
2239
0753

obg7’

1651
2503
3193
3662

3848
3692
3135
211§
0573

0795
1742
2580
3251
3694

3849
3656
3054
1985
0388

0893
1831
2656
3307
3724

3846
3615
2970
1850
o197

0990
1920
2730
3360
3750

3840
3570
2880
1710
0000

OO0

OKHN®®»

4

3

1

0

Read up for (24 — 342 4 43).
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CHAPTER 1L

DRAW BRIDGES.
ART. 14. CLASSIFICATION.

Under the general term “draw bridges” are here included
all structures over rivers that can be moved in order to secure a
clear passage way for boats. The ancient draw bridge which
spanned a moat around a castle usually turned on hinges at the
inside of the moat, and was pulled up or let down by a chain;
it embodied the general ideas of the hinged lift structure shown
in Fig. 41. Another old form of draw bridge was rolled on
wheels back from the moat, the inside end being usually
weighted to insure stability. :

Modern draw bridges may be classified as swing bridges, roll-
ing bridges, and lift bridges, the first being the most common
type. A swing bridge is supported upon a pier at the middle,
and when closed the ends rest upon abutments. When open
each arm is a cantilever; when closed the structure may be
arranged to form two simple spans, or to be continuous over
all the supports.

Rolling draw bridges are those which have wheels under the
land portions, and which can be pushed out to span the stream.
In some cases the structure consists of two parts, one on each
shore, and the water ends of these are locked together when
the bridge is closed. Rolling draw bridges are used but little.

Lift bridges are of various kinds. The simplest is a common
truss which is raised vertically to the desired height, both ends
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rising in guides arranged on towers. The hinged lift bridge
moves in a vertical plane around hinges at one end, like the
ancient draw over the castle moat. The rolling lift bridge is
raised in a similar manner, but also has a slight rolling motion.

An attendant is always necessary to operate a draw bridge.
The smaller and lighter structures are moved by man power,
the others by steam or electric power. A swing bridge rests
upon a turntable which is revolved by a rack. and pinion ar-
rangement. A rolling bridge is pulled back by the rope and
drum method. A lift bridge usually has a counterweight to
assist the motion. When land and water traffic is heavy it is
necessary that the structure should move quickly, one minute
being frequently specified as the time of opening or closing.

Prob. 13. See Engineering News, Oct. 27, 1892, for thirteen
designs proposed for a draw bridge over the Duluth ship canal;
ascertain which of these, if any, was built at that location.
See also Engineering News, Nov. 5, 1896, for designs presented
in the Newtown Creek bridge competition.

ART. 15. SwWING BRIpPGES.

The old form of swing bridge had a tower over the center pier,
from which inclined chains extended to the ends. These ends
rested upon the abutments loosely, so that a live load upon one
span lifted the other end. The arrangement was a bad one in
all respects, and is now never used. The modern continuous
swing bridge is of the type shown in Fig. 35, and when it is
closed the ends are locked so as to secure full continuity and
prevent injurious oscillations.

Another method of arranging the ends is to lift them by
wedges as soon as the bridge is closed, thus causing reactions
under dead load. The dead load stresses are then governed by
the principles of continuity. The method is an objectionable
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one because these reactions depend upon the amount of lift and
there is no exact method of determining them.

The usual method of arranging the ends is to lock them by
bolts or pins which produce no reactions when the bridge is
unloaded. The dead load stresses are hence the same whether
the bridge be open or closed, but when the live load comes
upon the truss the locking pins may take either positive or neg-
ative reactions, and accordingly the live load stresses are gov-
erned by the laws of continuous girders set forth in Chapter I.

There are hence three methods of arranging the ends of a
swing bridge, loose ends, lifted ends, locked ends. The first
should never be used, the second should be avoided or used
with great caution, while the third method may be safely em-
ployed as reliable both in theory and practice.

The draw bridge trusses are generally arranged so as to rest
upon supports over the pier. These supports rest upon the
turntable, which in turn is supported upon a pivot or upon a
series of wheels that enable it to be turned upon the pier.
There are two methods of supporting the turntable; the first
shown diagrammatically in Fig. 21 is the center-bearing method

Fig. 21. Fig. 22.

used for short spans where the entire weight is carried by a
central pivot. The second and common method is the rim-
bearing method where the weight is carried upon a series of
wheels around the circumference of the turntable. = A center-
bearing swing bridge is a continuous truss of two spans, as the
turntable is really a part of the bridge. A rim-bearing bridge
is a truss of three spans. In each case the beams which connect
the trusses with the turntable must be securely fastened to both.
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In the center-bearing method the entire weight may be carried
on a pivot resting in a step, as indicated in Fig. 21, or the pivot
may be supported by balls or by conical rollers. In the rim-
bearing method wheels are used instead of balls, and the turn-
table is moved by the help of a rack and pinion. Connected
with the apparatus that moves the bridge are levers and rods
which automatically open and shut the locking bolts at the
ends, and also hoist and lower the danger signals.

Swing bridges which have the center-bearing arrangement
of Fig. 21 are necessarily continuous and of two spans; they
are often built as plate girders. Those with the rim-bearing
turntable are properly considered as of three spans, and the
trusses may be continuoys, partially continuous, or simple; these
three classes will be discussed in the following articles.

The longest swing bridge is that designed by J. A. L.
WaADDELL, and erected in 1893 over the Missouri river at
Omaha, Neb.,, its length being 520 feet; see Engineering News,
Dec. 7, 1893. The heaviest is that designed by A. P. BOLLER,
and erected in 1895 over the Harlem river at New York, there
being three parallel trusses carrying four railroad tracks; see
Railroad Gazette, Feb. 21, 1896.

Prob. 14. Sketch a ball-bearing pivot for a locomotive turn-
table (see Engineering News, April 1, 1897).

Prob. 15. If each span in Fig. 21 is 50 feet long, find the
greatest negative reaction due to a live load of 2000 pounds per
linear foot.

ARrT. 16. A CENTER-BEARING CoNTINUOUS TRUSS.

A highway deck swing bridge of the Warren type is con-
tinuous over a center-bearing pivot, and has locked ends. Itis
100 feet long, has 10 panels, and is 6 feet deep. The dead load
per linear foot per truss is 500 pounds, the snow load 200
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pounds, and the live load 1000 pounds, all on the upper chord.
The dead panel load is 5000 pounds, or 5 kips, the snow panel

A4 B C D E F E D C B 4&

re 6 ¢ a e3e d ¢ § a§
Fig. 3.

load 2 kips, and the live panel load 10 kips; at the end apexes

A and A' the panel loads are one-half these values. It is

required to compute the maximum and minimum stresses due

to these loads. ‘

The dead load stresses are the same when the bridge is shut
as when it is open, the reactions at 7 and 2 being then zero.
Thus for the members Cc¢ and D¢ the dead load shear is
— 2.5 —§ — 5 =—12.5 kips, this producing compression in C¢
and tension in Dc. For the chord CD the bending moment is
— 2.5 X 25 — 5(15 + 5)= — 162.5 kip-feet, which gives compres-

“sion in CD. The shears multiplied by sec 6, or 1.302, give the
web stresses, and the moments divided by 6 feet give the chord
stresses.

The snow load is properly considered as upon the bridge only
when it is shut, since it could not be closed if snow were upon
it when open. The reactions due to snow hence follow the law
of continuity, and the snow stresses are found by taking one-
fifth of those produced by a uniform live load over the whole
bridge.

For the live load the reactions due to each panel load are
found by Art. 5, and then by the method of Art. g the greatest
" live load shears and moments are computed. As the data here
given are the same as those in Art. 9, the live load shears and
moments there tabulated may be directly used, the former being
multiplied by 1.302 and the latter divided by 6 to give the live
load stresses as tabulated below :
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Di1AGONALS. Aa Bb Ce Dd Be
Live load + V' | +22.13 +12.34 +5.62 +1.67 o
Live load — V —3.90 —-7.14 | —13.44 | —22.50 | —33.85
Snow load +3.65 +1.04 -1.56 —3.12 -6.77
Dead load —3.25 —9.77 —16.27 —22.79 | —29.28
Max. stress +22.5 —16.9 —31.3 —48.4 —69.9
Min. stress -7.2 +3.6 .—10.6 —20.1 —29.3

The algebraic sum of the + and — live load stresse$ are the
live load stresses due to a uniform live load, and one-fifth of
these sums gives the snow load stresses. Then remembering

CHORDS. AB cD EF abd cd o .

Live load +M | —14.17| —37.50| —1.33| +28.33 | +35.00 o
Liveload —4f | +2.50| +12.50{ —29.67| —5.00| —15.00| —50.00

‘Snow load —2.33| —s5.00| +5.67| +4.67| +4.00| —I0.00
! Dead load +2.08 | +27.08 | +53.75 | —10.42 | —37.50 | —104.17

Max. stress —14.4 | +39.6 | +59.4 | +22.6 | —52.5 | —164.2

Min. stress +4.6 —5.4 | +24.1 | —15.4 +1.5 | —104.2

I

that the dead load always acts, and that the snow and live loads
may act either together or separately, the maximum and mini-
mum stresses are found. These are in kips, one kip being
1000 pounds.

Prob. 16. If this truss have lifted ends, and if the amount
of lift be such that the dead load stresses follow the law of
continuity when the bridge is shut, show that the maximum and
minimum stresses for Aa, AB, ab are + 34.9 and + 5.2, — 22.3
and — 3.3, + 44.7 and + 6.7 kips.

ART. 17. PLATE GIRDER SWING BRIDGES.

Plate girders are used for deck swing bridges with lengths
up to nearly 200 feet. Being built shallower than trusses, they
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are stiffer under the passage of traffic. They are simple in
construction, are quickly erected, and when steel is cheap are
often more economical than lattice girders or pin trusses. The
ends may be locked so that the dead load stresses are the same
whether the bridge be open or closed, or they may be lifted so
that the dead load stresses follow the law of continuity when
the bridge is closed, the former being the preferable method.
The depth of the girder is usually made less near the ends than
near the middle, as this is conducive to uniformity of flange
sections. The live load to be used in computing the shears
and moments may be a heavy uniform load or actual locomotive
wheels.

The principles in Arts. 7 and 8 will serve to show how the
live load should be placed to give the maximum shears and
moments at different sections. Let the live load consist of the
typical consolidation locomotives shown in Fig. 24, which is
class 7" of the compromise standard system recommended by
WabpDELL. For maximum shear at the left end of the girder,

K] TSI RITQT Ao o g- Q! Q! gl U] °|'g| ]
(] el Qt QY [ Jt (1] 1 Ql Ql 1 ] QI Q! & [
S SiSiSis SiSisiS S Sisisist SisSisSi S g 4200 oo
al ey Fal Pal | i -1 per
a R e "ﬁiwiwg R I I

o D

the load should come on from the left until the last driver is
just entering upon the span. For maximum shear at the pivot
pier, the load should pass on until the first driver is nearly at
the pier. For maximum positive moment in the first span, that
span should be as fully loaded as possible with the center of
gra\}ity of the drivers on the left of the center of the span.
For maximum negative moment over the pier, both spans
should be fully loaded, with the locomotives facing each other
on the two spans, and as near the pier as possible. Trial will
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be necessary to determine the exact position, but after a little
practice it can be closely assigned at the outset.

For example, let the length of each span be 50 feet. Then -
Fig. 25 shows the position of the wheels for maximum positive
shear at the left end, and Fig. 26 that for maximum negative

o oo .
? 5 - & X — X
3 I 2 , - 7

Fig. 2s. Fig. 26,

shear at the middle. Also Fig. 27 gives the position for maxi-
mum positive moment, and Fig. 28 that for maximum negative

)

a 9 a a a a

7 ;3 7 2 K;
Fig. 27. Pig. 28.

moment. Let the bridge have two tracks; then the loads in
Fig. 24 are the wheel loads for one girder. In what follows,
these loads will be divided by 1000, and thus be expressed
in kips.

In Fig. 25 the distance of the pilot wheel from the left end is
23 feet, and those of the drivers 15, 10, 5, 0 feet. Thus, the
values of £ are 0.46, 0.30, 0.20, 0.10, 0.00. The reaction R, due
to each of these loads is computed by the formula of Art. 5,
and the sum of these reactions is 149.6 kips, or 149 600 pounds,
which is the maximum positive shear at the left end. For
Fig. 26, placing the pilot wheel at the support 2, the values of
% are 1.00, 0.84, 0.74, 0.64, 0.54, 0.38, 0.28, 0.18, 0.08, and the
sum of the reactions are R;=+99.2 and R,=+ 196.6 kips.
Hence the shear on the left of. the pivot pier is +99.2 — 277.0
=—177.8 kips; this is very near the maximum, a slightly
larger value being possible if the pilot wheel be upon the second
span.

For Fig. 27 the exact position to give absolute maximum
positive moment is uncertain, but a rule sufficiently accurate
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is to put the third driving wheel at about four-tenths of the
span from the left end. This brings two tender wheels on the
span; the values of £ are 0.04, 0.14, 0.30, 0.40, 0.50, 0.60, 0.76,
and the reaction R, is found to be 120.2 kips. The positive
bending moment under the third driver is then 1538 kip-feet, or
1 538 0oo pound-feet, and this is greater than any other for this
position of the loads.

For Fig. 28 the exact position of the facing locomotives can
be found only by trial. If the pilot wheels be 3 feet from the
pivot the last tender wheels are 1 foot from the end supports,
and the values of £ are 0.02, 0.12, 0.22, 0.32, 0.48, 0.58,
0.68, 0.78, 0.94. The reactions R, and Ry due to these loads
are + 115.37 and — 19.25; hence for loads on both spans
R,=+06.12 and the moment at the pier is — 1925 kip-feet,
or — 1 925 000 pound-feet.

The dead load shears and moments, taking the dead load as
1200 pounds per linear foot per girder, are also computed for the
same sections. In the following table both live and dead load

SHEAR SHEAR MOMENT AT MOMENT AT

AT END. AT PIER. 20’ FROM END. PiBr.
Dead load o —60 000 — 240000 | — I 500 000
Live load + 149600 | —177800 | + 1538000 | — 1925000
Maximum + 149600 | —237800 |+ 1298000 | — 3425000
Web sections 24.9 sq. in. | 39.6 sq. in.
Depth of girder 5.6 feet 8 feet
Flange stresses 231 800 428 100
Flange sections 25.8 sq. in. | 47.6 sq. in.

results are placed, and the maximum values found. Taking
6000 pounds per square inch as the unit shearing stress, the web
sections result by dividing the shears by this. The girder is to
be 4 feet deep at the end, and 8 feet deep over the pier; the
_flange stresses then result by dividing the moments by the cor-
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responding depths. Taking 9ooo pounds per square inch as
the allowable stress for tension or compression, this divided into
the flange stresses gives the net flange sections required.

Locomotive turntables are usually plate girders; if the ends
just touch the supports under dead load the full live load pro-
duces stresses according to the laws of continuous girders, and
the stresses may be computed by the methods above given.

Prob. 17. Show that the greatest positive moment due to a
single load P on Fig. 27 occurs when 2=0.43. Also that the
greatest negative moment at the center support due to a single
load P occurs when £ =0.58.

ART. 18. A RiM-Bearing ContiNuous TRuss.

A railroad swing bridge of the Pratt type is continuous over
a rim-bearing turntable and has locked ends so that the dead
load stresses are the same whether it be opened or closed. - The

. c E E
',’ \ \\ / ,
/’ ‘\ // s
7 e & ¢ d 2~ y 4 z
Fig. 29.

spans are 75, 18, and 75 feet, the depth being 17 feet at 42 and
21 feet at the middle. The dead panel load is 18 kips, of which
13.5 kips are on the lower chord, and the live panel load is
54 kips. The diagonals in the central panel are made very
heavy, so that full continuity is secured. It is required to com-
pute the maximum and minimum stresses.

As this truss has an inclined upper chord the method of
moments will be used for all members. For all web members
the centers of moments are at the point where the two chords
meet; this is at a distance 16 p to the left of the left support, p
being the panel length of 15 feet. The lever arms for the ver-
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ticals Aa, Bb, etc., are 17p, 18, etc.; those for the diagonals
Ba, Cb, Dc, Ed, are 13.06p, 14.13p, 15.20p, 16.27 p; those for
Ab and Bc are 13.50p and 14.60 2.

When the bridge is open each arm is a cantilever and the
dead load stresses are computed by the method of Part I,
Art. 71. When the bridge is closed these dead load stresses
are unaltered by the locking bolts, but the live load stresses
must be those given by the laws of continuity in the last
chapter.

The reactions due to each live panel load of 54 kips are first
found by the formulas of Art. 6; these are given in Art. 10.
Then the live load is put into the position to give the largest
shear for each web member or the largest moment for each
chord member; the positions are stated in Arts. 7 and 8. The
equations of moments for each member are then stated and
solved. For example, for Dc,

—77.15 X 169+ 54(17p+ 18p +199) — S X 15.2p=0,
—7.03 X 16p— S X 15.2p=0,

whence + 110.6 and — 7.4 kips are the limiting stresses in D¢
caused by the live load. In fact all the equations in Art. 10
apply here, if the dead load reactions and panel loads be
thrown out.

In the following table the dead and live load stresses for
some of the members are given in kips, and the maximum and

Lockep Enps. Cé Ab Ce ab i cd cDh
{ .
Dead load +41.1 o —35.1 ‘ —22.5 | —81.0 | +48.0
. +61.3 | +53.6 +21.1
Live load -g (=22.9) |(—21.8) —456 | +743 | _ |, 6 | —715

Maximum +102.4 | +31.8 | —80.7 | +74.3 l —92.6 | +48.0
Minimum ~ | + 18.2 o —35.1 | —22.5 | —59.9 | —23.5
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minimum stresses are then found. Itis seen that the diagonal
Bc has no stress, since the member (¥ is always under tension,
while 45 is needed to take tension under live load. The lower
chords as far as ¢ may take either tension or compression, while
beyond ¢ they are always in compression.

If this bridge have lifted ends, and if the amount of lifting
be such that the dead load stresses be those of a purely con-
tinuous "beam, then there are two cases of dead load to be
considered, as in the following tabulation. Here the live load

Lirtep Exos. | C3 As ce ab d cp

Dead load, open; +41.1 o —35.1 | —22.5 | —81.0 | +48.0
Dead load, shut © +12.8 | +10.6 —4.5 | +24.8 +3.2 | +23.8
+61.3 | +53.6 +21.1

. (
Live load “(_22.9) (~21.8) —456 | 4743 | _;16 | 714
Maximum  ; +74.1 | +64.2 | —49.1 | +99.1 | —81.0 | +48.0
Minimum : —10.1 o —45 | —22.5 | 4+24.3 | —47.6

can only be combined with the second case of dead load to
find the maximum and minimum.

Prob. 18. Compute the stresses for A4z, Aa, and 7a for the
case of locked ends; also for the case of lifted ends.

ART. 19. PArRTIALLY CONTINUOUS SWING BRIDGES.

A partially continuous swing truss is a structure in which the
continuity is imperfect, owing to the omission of diagonals in
the span or panel over the pier. As this panel has horizontal
chords it follows that no shear can be transmitted through it,
and hence the continuity is defective. Let the length of the -
middle span be #/, and that of each of the other spans be /.
If a load P be placed in the first span at a distance £/. from
the support 7z, the shear and moment diagrams will be as
shown in Fig. 30, the reactions R; and R, will be equal with
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opposite signs, and the moments ¥, and M, will be equal. It
is seen that while R, is negatlve, R, and R, are both positive.
This is a favorable condition
for rim-bearing trusses, since
all tendency to tipping of the
turntable is thus avoided.
Sometimes diagonals are in-
serted over the pier, but made
very light, so that they do not
really carry shear. In fact all
swing bridges of large span are now arranged so that they
are partially continuous in respect to the transmission of
shears.

NI e
Fig. 30.

The theorem of three moments is inapplicable to this case
because the elastic curve is not continuous over the supports
2 and 3, it having in fact a cusp at each of these points on
account of the break in shears. Some other principle must
hence be used to determine the reactions due to load P. The
principle of least work, explained in Art. 83 of Part I, will here
be employed; this asserts that the reactions must be such as
to render the work of the internal stresses a minimum. Now
regarding the truss as a beam of constant cross-section, the
work of the internal stresses is proportional to the sum of the
squares of all the bending moments (see Mechanics of Mate-
rials, Art. 109). For a section between the left end and the
load the bending moment is Rz, for a section on the right of
the load it is Rz — P(x — #/), for the middle span it is R,/, and
for the right-hand span it is Rx. The sum of the squares of
all the bending moments hence is,

f"mxzdx f’R P+ PhlYd. f"'k?ﬂd f’Rﬂ;ﬁdx
MRS + ), (Rw—Px+PklYdz+ ) RpHx+ ) Rl xdz,

and the values for R, and R, must be such as to make this a
minimum. '
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The reactions in Fig. 30 are subject to the two static condi-
tions of equilibrium : first, that the sum of the reactions equals
the load; second, that the sum of the moments of the re-
actions equals the moment of the load, or,

Ry+ Ry+ Ry+ R,=P, R(2l+nl)+ Ryl +nl)+ Ryl =Pkl

Also, the condition of partial continuity is that no shear exists
in the middle span, or R, + Ry, — P =o0. From these three
equations are found,
Ry;=P—R,, Ri=—Ry=R,—P(1—Fk),

and hence R,;, Ry, R,, are known as soon as R; has been
found. To determine R, let the integrations in the above ex-
pression be performed and then R, be replaced by its value in
terms of R;. An expression is thus found containing only &,,
P, %, and /, and making this a minimum with respect to R,
the value of R, results. The reactions then are,

— — — P —
Ry=P(i— B - L - 1)
Ry=Pk+—L2 (-,

2 4+6n

— - P —
Ry=—Ry=—Le- )

Here if » =0, the reactions reduce to the values found in
Art. 5 for the case of two equal spans. Another and perhaps
better method of deducing these formulas is given at the end
of Art. 22.

A continuous truss of three spans has R negative and R,
positive for a load in the first span, but the reverse is the case
for a partially continuous truss like Fig. 30. The distribution
of live load to give the largest shears is hence different from
the cases shown in Figs. 11 and 12 of Art. 7, and is similar to
those of Figs. 9 and 10. Itis plain on reflection that the live
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load distribution to give positive shear for a section in the first
span is as shown in Fig. 31, and that the distribution to give
negative shear is as shown in Fig. 32.
) thﬂmmm' mmm]ﬂ-V mmm]mm
-y 7 u— A & + 3 & A
7 2 3 4 Vg 2 3 4
Fig. 31. Fig. 32.

Reasoning by the method of Art. 8, the following distribu-
tions of live load are deduced for the moments. For the first
span there is a critical point 7 whose distance from the left
support is, :

j=4106n,
5+6#

For all sections on the left of this point the largest positive
moment occurs when the first span is fully loaded, and the
largest negative moment when the last span is fully loaded with
the live load. For a section on the right of the point 7 the

+ -kl —pr
ekt i
g By 5% < 1‘;‘(....,,....4‘*2 3 4
Fig. 33. Fig. 34.

largest positive moment occurs when the live load is placed as
in Fig. 33, and the largest negative moment when it is placed
as in Fig. 34. Here the distance £,/ is found from

kl=5+6n—(4+ 6;1);%

which gives the load limits for any value of x greater than 7.
For instance, if #» =o0.25, then 7=22/; and for r =33}/, the
value of 4, is 0.536. When x =/, then 4, = 1; that is, both
spans are fully loaded to give largest negative moment in the
middle span.

The above formulas for the reactions were deduced by MEr-
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RIMAN in 1895, and published in the Railroad Gazette of Sept. 6,
and in' Engineering News of Sept. 5 for that year. Being
derived under the assumption that the truss is a beam of uni-
form cross-section, they are not strictly correct, but they haves
the same validity as all other formulas for reactions given in
the preceding pages. In Art. 22 it will be shown how accurate
values for the reactions of a trussed structure may be computed.

Prob. 19. If the side spans in Fig. 30 are not of equal length,
let / be the first span, n/ the pier span, and #'/ the last
span. Show that 4 + 6 7, in the formulas on page 49, is to be
replaced by 2 + 2#' + 6 in the values for R, and R,, and by
#'(2 4+ 27 + 6 #) in that for Rg and R,.

ART. 20. A PArTIALLY CoONTINUOUS TRuUSS.

In Fig. 35 is shown the modern type of truss for a partially
continuous swing bridge. The members drawn in light lines
take only tension, those in heavy lines may take either tension
or compression. The truss is partly of the Pratt and partly
of the Baltimore type, this being the arrangement which has

. F G G
N
D E N
A B c rd .
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IA\
’I \\
Fs fay O O -
a e ¢ d e VAR 7

Fig. 35.

been found to be most conducive to economy of material (see
Part I, Art. 89, and Part III, Art. 3). The broken members
in the tower serve only to stiffen it and carry no shear, hence
the truss is only partially continuous. Let the panel length be
20 feet, each side span being thus 140 feet, and let the middle
span be also 20 feet. Let the depths Aa, Ee, G2, be 2o, 28,
40 feet respectively. Let the dead panel load be 24 000 pounds
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or 24 kips, one-fourth of this being on the upper chord, and the
live panel load 68 kips, all on the lower chord. The ends are
to be locked, so that the dead load stresses are the same whether
the' bridge be open or closed.

The stresses due to dead load are’readily computed arith-
metically by the principles of Part I, or graphically by the
methods of Part II. The method used in Part I, Art. 71, is
in particular an advantageous one for the webbing. The dead
panel load at 7 is g kips, at a, 4, etc., 18 kips, and at 4, B, etc.,
6 kips.

From the formulas of the last article, the reactions due to
the live panel load of 68 kips are computed, 7 being 1/7:

Load at a b ¢ d e f Sum

Reaction R1=+56.33 +44.90 +33.96 +23.77 +14.52 +6.52 +180.00

Reaction R4= —1.96 —3.67 —4.90 —537 —4.9I —3I9 —24.00

When the first span is fully loaded, the reaction R, is 4+ 180.00,
when the right-hand span is loaded it is —24.00, and when
both spans are loaded it is + 156.00 kips.

It is customary in many bridge offices to determine the chord
stresses due to live load by computing them for two cases;

CHORDs. AB BE EG GG 18 be c2

Dead load +38.4 | +82.9|+2960 | +283.5 —9.0| —38.2|—1864
Live load on 7-2 | —266.8 | —281.4 | +87.7 | +84.0|+180.0|+265.5 | +205.7
Liveloadon 3-¢| +439| +60.3| +877| +840| —240| —43.6| —85.7

Maximum —228 | —199| +471| +452| +r171| +227| —272
Minimum +82| +143| +296, +283 —33 —82 +19

first, when the left span is loaded ; and second, when the right
span is loaded. These are then combined with the dead load
stresses to find the maxima and minima. This is correct for
all chords except those whose center of moments lies beyond
the critical point 7 (Figs. 33 and 34). For the truss in hand
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7=44/, and the method is strictly correct for all chords, since
the distance of the center £ from the left support is less than
this value of 7. The above table gives the chord stresses for
dead load and for these two cases of live load, as also the
maxima and minima resulting from their combination.

The vertical members Aa, d'd, f'f are stressed only by the
lower panel load, the limiting values being + 86 and + 18 kips.
The verticals Ce, Dd', Ff' have the stress — 6 kips due to the
upper panel load. The vertical £e has + 136 and + 42 kips.
The auxiliary braces @'¢ and f'¢ are stressed only by the panel
loads at &’ and f/, the limits being —80 and —21 kips. The
end post Ar has + 12.7 under dead load, and —254.8 and + 33.1
for the above cases of live load, which give —242 and +46 for
the maximum and minimum. The center post G 2 has the maxi-
mum —135 and the minimum —85 kips.

For the remaining web members it is necessary to put the
live load in the position to give the largest positive and negative
live load shears for each, as shown in Figs. 31 and 32, and then
to compute the corresponding stresses. These are given in
the following table, and by combining them with the dead load

Wes. As Bb Be dec Ed Sz Ef
Dead load —41.3| +47.2 | —69.2 |+126.9 [+147.8 [—118.5 | —97.6
. +143.1| —64.5 | +83.9 | —58.6| —57.2| +2a1| +21
Live load g —50.4| +68.5 | —95.0 [+180.7 |+240.0 [—353.8 | —204.5

Maximum +102| +116 | —164 | +307| +388| —472| —392
Minimum —92| —17| <415 +68| +91| —116| —095

stresses, the final values are found. These are in kips, one kip
being 1000 pounds.

It is seen that the stresses found for this truss are such as to
enable a large part of each chord to be made of uniform sec-
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tion, and that the same is also true for a number of pieces of
the webbing. This is one of the reasons that render it a highly
economic type of truss.

Prob. zo. If the webbing be computed for the live loads used
for the chords, show that the maximum stress found for B¢ will
be only 56 per cent of its true value.

ART. 21. DEFLECTION OF A SwiING TRuss.

The deflection of a swing truss due to dead load is readily
computed by the method explainéd in Part I, Art. 81. With-
out repeating the reasoning there given, the method will be now
briefly stated. Let S;, S,, S;, etc., be the stresses in the
members due to the dead load when the bridge is open. Let
7,, 75, Ty, etc, be the stresses due to a load Q at the free
end of the truss. Let L,, L,, Lg, etc,, be the lengths of the
members, and A4,, 45, Ag, etc., the areas of their cross-sections.
The deflection at the end is then given by

1 (SiTVL | SoT,L, | S;T,L
S S
in which the coefficient of elasticity £ is regarded as having the
same value for all the members of the truss. In respect to the
load Q it is to be noted that its value may be taken as anything
convenient, 1000 pounds, or one kip, being frequently used.
As each stress 7 is proportional to O, the latter really occurs
both in the numerator and denominator of the expression, and
hence its actual value is unimportant.

1 (STL
=or> 2 W

In the case of a truss which is built, the actual values of the
areas of the cross-sections are to be determined by measurement
in the field or from the working drawings. In the case of a
truss which is under design, the cross-sections must be deter-
mined before the deflection can be computed. An example
showing the method of procedure will now be given.
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Take the truss of the last article and suppose that it be
required by the specifications that the working unit stresses
shall be as follows for finding the net sections: For tensile mem-

(]

- bers 7000(1 +IL?‘> when there is no reversal of stress, and
ma
I min : . .
7000(1 - ——) when there is reversal; for compression mem-
2max,
bers 5000(1 +gn_n> when there is no reversal of stress, and
max
I min . s .
5000(1 =3 —-——) where there is reversal, these being in pounds
max ~

per squafe inch, and both max. and min. being taken in the
formulas without regard to sign. In the following table the
first column designates all the members of the truss in Fig.
35, which receive stress under a load at the end z, these being

1 2 3 4 5 6 7 8 9 10
Muwnas, | MA% | M | Mix. | U Amen | Lavori| 5| | STL
sq.in.| feet.
AB —228 +82 | 0.36 4.1 | 56 20.1 +38.4 | +439 605
BE —199 | +143 | o.71 32| 62 60.3 | +82.9 | +60.3 | 4862

EG +471 | +296 | 0.63 | 11.4 | 42 41.8 | +296.0 | +87.7 | 25836
GG +452 | +283 | 063 | 11.4 | 40 100 |+283.5 | +840 | 5954

b +171 —33| o019 6.3 | 27 40.0 —9.0 | —24.0 320
be +227 | —82f 036| 57| 40 200 | —38.2 | —43.6 833
c2 —272 | +19 | 007 48| 57 80.0 | —186.4 | —85.7 | 22420
23 —452 | —283 | 063 | 8. | 56 | 100 | —283.5 | —84.0 | 4252
Ar —242 | 433 014 | 46| 53 | 283 | 4127 | 4331 225

Ab +102 | —92 | 0.0 39| 26 28.3 | —41.3 | —29.8 | 1340
Bb +116 | —17 | og 6.4 | 18 220 | +47.2 | +21.1 | 1217
Be —164 | +15| 009 4.8 | 34 29.7 | —69.2 | —23.2 | 1402
Ed! +388 | 491 | 0.23 86 | 45 24.4 | +147.8 | +31.4 | 2516
dlc +307 +68 | o.22 86 | 36 24.4 | +126.9 | +31.4 | 2701

Eft —392| —95 | 0.24 87| 44 24.4 | —97.6 | +2a1 | —114
Sz —472 | —116 | 025 | 87| 54 | 244 |—118.5 | 4201 | —112
G2 —135 | —85 | 0.63 81| 30 | 400 | —85.0|—25.2 | 2856

ESTL/A =77113
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all that it is necessary to consider to compute the deflection of
that end. The second and third columns contain the maximum
and minimum stresses in kips computed in the last article. The
fourth column gives the ratio of the minimum to the maximum
stress, regardless of sign. In the fifth column are the working
unit stresses as computed from the specified rules above stated;
these are in thousands of pounds per square inch; that is, in
kips per square inch. These unit stresses divided into the
maximum stresses give the preliminary net areas of the mem- -
bers in square inches, and these are arranged in the sixth col-
umn. The lengths of the members in feet are in the seventh
column; for GG and 23 only one-half their lengths are stated
because it is intended to include only one-half of the truss.
The eighth column gives the dead load stresses when the bridge
is open. In the ninth column are given the stresses due to a
load of 24 kips at the end of the truss; Q is here taken as 24
kips because the chord stresses due to that load have been
already obtained in the last article, and the web stresses can
be derived by a little additional computation. The last column
contains the values of S7Z/A for the different members. The
sum of these valuesis 77 113; since all lengths have been taken
in feet, this is to be multiplied by 12 to express it in inches.
Now this truss being steel, £ is 30000000 pounds per square
inch, or 30000 kips per square inch. Then from the above
formula .
A=77113 X12

= 1.29 inches,
24 X 30000

which is the deflection of the truss due to the dead load. The
end of the lower chord at 7 is hence lower than the lower chord
at 2 by this amount, and the levels of the bridge seats must be
arranged accordingly.

The values of 4 used in the above example are preliminary
- net areas, no allowance having been made for rivets, or for
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stresses due to flexure and to length of compression members,
all of which must be taken into account in an actual case. The
section used for the center post G2 has been taken larger than
the net value as it is to support an engine house, and is also
affected by wind. In all final computations for deflection the
gross areas of the members must be used.

The above formula for the deflection is a general one and
may be used to determine the deflection at any point of the
truss due to a live load in any given position. In this case
S denotes the stresses due to the given live load, and 7 the
stresses due to any load Q placed at the point whose deflection
is desired; the value of Q is generally taken as 1000 pounds,
or one kip, unless the stresses due to some other load at that
point have already been computed. Here the summation must
be extended to include both arms of the truss, since the stresses
are different in the two halves. If S and 7 are of different
sign it is to be noted that their product is negative, but this will
not usually occur for many members. '

If it be desired to determine the deflection at a certain point
due to a load Q at that point, the stresses S and 7" are the same,
and the formula becomes

. Tl @)
If the load Q be taken at the end of the truss this formula

gives the deflection of the end due to that load. A load 7 at
the end evidently produces £/Q times this deflection.

Prob. 21. Compute the amount of the above deflection of 1.29
inches which is due to the actual panel load of 9 kips at the end.

ART 22. TRUE REACTIONS FOR SWING TRUSSESs.

In the preceding pages stresses have been computed for
swing bridges by the use of formulas for reactions which,
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although accurate for beams of uniform cross-sections, do not
strictly apply to trusses. In a swing truss the chords are

. usually not parallel and they are not of uniform section through-

out, while such requirements are implied in deducing the
formulas for reactions. Moreover, these formulas are derived
from the bending moments alone, while in reality the influence
of the webbing is considerable. It is now to be shown how,
after a preliminary design of the truss has been made, more
accurate values of the reactions may be determined. With
these new reactions the stresses may be recomputed, and the
sections revised. Then, if necessary, reactions more accurate
still may be derived.

~ The stresses are first to be computed by the method of the
preceding articles, using the common formulas for reactions.
Then from these stresses, using the unit stresses assigned in
the specifications, the cross-sections of the members are to be
derived. Let these cross-sections
y | % be called 4,, 4,, A3, etc. Then
Vo33 4 let it be required to determine the
’ Fig. 3 reaction R, due to a load P at any
position on the first span. For this purpose suppose the truss,
as in Fig. 36, to be placed upon the supports 2, 3, ¢, there being
no support at 7. Let the deflection A of the end z, due to this
load P, be determined by the method of Art. 21, the stresses
S and 7 being used for all the members of the truss. Also
let the deflection A’ of the end r due to a load Q at that end be
determined. The formulas for these deflections are:

STL 1 s T2L 2L
—3=2=, A=
QF 4 QE A

Now, under the above supposition that there is no support at z,
these deflections exist; but if the end be raised the amount
A a reaction R, due to P results, and if it be raised the
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amount A’ the reaction Q results. These reactions are pro-
portional to the corresponding deflections ; hence,

2STL/A .
R=037 05 ®

which is a general formula for the left reaction due to a load 2P
at any point, .S representing the stresses due to Z when the left
end is free and the right end is locked, and 7 representing the
stresses due to a load Q at the end. Here Q may have any
value as it is a factor in every 7. The summation must be ex-
tended to include all the members of the truss in all spans.

The above formula may be modified so that it will be
unnecessary to compute stresses for the-right-hand part of the
truss. Referring to Fig. 36.let £/ be the distance of P from
the left end; then as there is no shear in the middle panel, the
reaction R, is equal to P, and the reactions Ry and R, are
P(1 — k), the latter being negative. Accordingly the stresses
caused by P in the right-hand part of the truss are those due to
aload P(1 —#)at 4. In like manner the load @ at 7 produces
a negative reaction Q at ¢, and the stresses due to Q are the
same for both parts of the truss. Hence, the formula (1) may be
written .

05, 31L 4 p(1 — 0z, L
A A
Ry=— s 7L ‘
22
and this reduces to the simpler form,
' » _ _ 2,STL ZA,

in which 2, denotes that the summation covers all members
between the left end of the truss and the middle of the middle
span.

To illustrate the method take the truss of Fig. 37 whose
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stresses were computed in Art. 20, and for which the approxi-
mate sections were determined in Art. 21. Using these sections,

£
c b»_ £
A 4? S—
s
7
a £ ¢ d e S
Fig. 37.

let it be required to compute the true reaction R, due to a load
of 68 kips at the panel point c. The load Q will be taken as 24
kips, because the stresses 7" due to this load were computed in
Art. 20. The values of 7, L, and 4 for all members between 7
and the middle of the span 2-7 are given in the table of Art. 21.
Squaring each 7, forming the quantities 72L/A4 and adding,
there is found =, 722 /4 = 31638. The stresses S, due to a
load of 68 kips at ¢ when there is no support at 7, are then com-
puted; namely, EG =+ 142.0, GG =+ 136.0, c2=—9J.2,
2-3=—1360, Ed =dc=+ 1186, Ef' =f'2=— 474,
G 2= —40.8 kips. Multiplying each of these by its 7 and Z,
and dividing by 4, there is found 3; S7L/A = 34780. Then
from formula (2) the reaction at the left end due to this load is,

_ 68 x4, 24 X 3478 _ .
1™ 2 x7 " 2x 31638 32.62 kips,

while the value computed from the beam formula and used in
Art. 20 was 33.96 kips.

In like manner the true reactions due to all the loads for
the truss are found, and the following is a comparison of their
values with those used in the previous computations :

Load at a 1] ¢ d e ¥ Sum
Ry(Art. 20) = 56.33 44.90 33.96 23.77 14.52 6.52 180.00
True By =154.84 43.95 32.62 21.32 13.16 5.45 171.34
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These are the true reactions for the truss when built with the
sections given in the sixth column of the table in Art. 2r.
By the use of these true reactions the stresses may be recom-
puted and the sections revised. The new maximum stresses
will be about 7 per cent smaller than the old ones for the
chords near the left end, and about 12 per cent larger for
the chords near the middle span.

The formula (2) deduced above is a general one, good for all
swing trusses of two or three spans, and it may be used for com-
puting the reactions in the first instance instead of using the
beam formulas of the preceding articles. In doing this the
cross-sections are unknown, and they may ‘be taken as equal,
or A be made unity; further, the summation may be confined
“to the chord members only. For example, if this be done for
the load of 68 kips at ¢, there is found R, = 31.83, a result which
agrees very well with the second value.

Formula (2) may also be applied to a beam of constant cross-
section by replacing S and 7 by their values in terms of bend-
ing moments, and changing the sign of summation to that of
integration. By the methods of Mechanics of Materials, the
expresssion E% becomes for a solid beam fMgt;ix, in
which M is the moment due to the load, and » the bending
moment due to a load unity at the point whose deflection is

desired (see also Art. 76). Accordingly, (2) reduces to

S Mmax + ™ Mmd

.L‘Im”d,r +j;wm3a'x ’

in which the moments are to be taken as if there were no
support at the left end. Thus, for the case of the partially
continuous truss of Fig. 36, the values of A and # for the first

Ri=}P(1—-k)+1%
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span are — P(x — 4/) and —x, and while for the middle span
they are — P(/ — 4#/) and — /. Inserting these and performing
the integrations, there results, . :
P
4+6n

which is the same as deduced in Art. 19 by another method.

R, = P(1 — F)—

(£ — #3),

Prob. 22. Compute the live load stresses for AB and GG of
Fig. 37, using the true live load reactions there given. Then
find the revised maximum and minimum stresses for these
members.

ART. 23. DoOUBLE SwING BRIDGES.

In Fig. 38 are represented two swing trusses, each of which
is partially continuous by virtue of the omission of diagonals
over the pier, and

> by the break in the
Fig. 38 chords at M. The
river here occupies the space CD, the two piers BC and DE
being built at the banks. Each bridge swings upon its own
. pier, and when both are parallel to the banks the entire river is
free for the water traffic. When the bridge is closed the two
river arms are locked at #/, and the land arms are locked at A
and F. If the locking bolts bring no upward pressures at the
ends, the dead load stresses are the same when the bridge is
closed as when it is open. The live load stresses, however, are
governed by the laws of partial continuity, and these can be
computed as soon as the reactions are determined.

Case I. — Let the spans BC and DE have the length 7/, and
the other spans the length /. Let a single load P be upon the
truss at a distance 4/ from the support A4, and let the reactions
at 4, B, C, D, E, F be denoted by R, R,, Ry R, R, Rg; to
determine these, six conditions are required. The principles of
statics furnish two conditions, namely, that the sum of the verti-
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cal forces equals zero, and that the sum of the moments of these
forces equals zero, or, algebraically,

Ri+Ry+R3+ R, + R, +Rg— P=o,
— Pl + Ryl + Ry(1 + )l + R(3+ n)l + Ry(3 + 2n)/
+ Rg(4 + 2n)/=0.
This truss is partially continuous in three respects; there is no
shear in the span BC, there is no shear in the span DE, and
there can be no moment at #/. These conditions furnish the
three equations,
R1+R,—P=o, Rg+ R;=o0,
R+ R(1 +n)! + Ry(2+n)/ =0,
and thus five eqﬁations are established between the six unknown
reactions. From these are deduced,
R,=P—R,, Ry=—R,=—R;=R;=P(1—k)— R,
and thus all reactions are known when &, has been found. .
The value of R; may be derived by the principle of least
work, as was done by MERRIMAN in 1895, or it can be deduced

by the application of the general formula (1) of Art. 22. With-
out giving the algebraic work, the result may be stated, namely,

Ry=P(t—BH)— Ll

+ 12 n(k_ks)’

from ‘which numerical values may be computed either directly
or by the help of the table in Art. 13.

Casg II. — Let a single load P be on the span CM at a dis-
tance £/ from the middle joint #Z. Then by a similar method -
are found,

R,=—R,, Ry=Pk—R, R,=R,==R,=P(1—k+R,
and then the formula for R, is,

Ry=—1PG-p-, il (k—ks).'

841272
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These formulas may also, by a change of subscripts, be applied
to loads on the span MD,and those of Case I be applied to
loads on the span £F. Also, they may be applied to a uniform
load over the entire span by replacing P by wd(#/), and inte-
grating between the limits o and 1.

Few draw bridges of this kind have been built. The most
important one is that at Cleveland, Ohio, by W. P. Rice
in 1895. The total length is 279 feet, each river arm being
65 feet, while the short spans over the piers are 15 feet. It
is a highway bridge with the floor on a three per cent grade.
For description and illustrations, see Engineering News, August
8, 189s.

When the spans 4B and CM in Fig. 38 are of different
lengths, let AB=EF=/ BC=DE =nl, and CM =MD =1l
The following formulas will then furnish the reactions:

CasiE I.— A load on the span 4B at a distance 4/ from the
left end. The reaction at A4 is

Ry=P(1—b)= Lk 1),

in which m =4+ 4#' + 122 The other reactions are,
R,=P—R,, Re=—Ry=—n'R,=n'Ry=P(1 — k)— R,.

Case I1.— A load on the span CM at a distance k(n’l) from
the middle joint #7. The reactlon at Ais,

R,=—1Pr'(1 —k)— ;”—P(k — i),
and also R, = - R,. The others are given by
WRy,=n'Pk—R,, Ryg=n'R;=— Rg=Pn'(1 — k)+ R,.

In both these cases, if #' be made unity, the formulas reduce
to those previously given. Also, if » be made zero, they apply
to the case of center bearing pivots, as in Fig. 39, where the
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sum of R, and Ry gives the reaction at 5B, and the sum of R,
and R; gives the reaction at C.

Prob. 23. For the case of Fig. 38, let the main spans be each
40 feet long, and the pivot spans be each 30 feet long. Com-
pute the reactions due to a load of 100 pounds at the middle
of the span AB. Also compute the reactions due to a load
of 100 pounds at the middle of the span CAZ.

ART. 24. SIMPLE SWING BRIDGES.

In Fig. 39 is shown a draw bridge which is formed by two
simple spans. The central turntable supports the two water

[4

/) Y ., L 3 ' ; [ ]
Fig. 39.

ends of these spans, and also a tower having an engine at C.
When the bridge is to be swung open tension is brought by the
engine upon the two members CU, so as to lift the land ends of
the bridge from the abutments. When thus lifted each span is
a cantilever arm, and the entire structure is revolved on the -
turntable until it is at right angles with its fixed position.
When revolved back into place the tension in CU, is relaxed,
and each span becomes again a simple truss.

The methods of computing the stresses for this case need not
here be explained, as they have been already given in Part I,
Art. 71. It is seen that when the bridge is open the upper
chord is in tension and the lower in compression, and that when
it is closed the reverse is the case. The chords must be propor-
tioned to resist both tension and compression, and they are
slightly heavier than those of the partially continuous truss of

Fig. 37.
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This type of draw bridge is increasing in favor, since by its
use all the uncertainties of continuity are avoided. The first
important one erected was in 1889 on the Baltimore and Ohio
Railroad over the Arthur Kill on Staten Island, N.Y., which
has a total length of 496 feet; for description see Railroad
Gazette, June 22, 1888.

Prob. 24. Ascertain, by consulting the engineering journals,
what type of truss is used in the following swing bridges, and
give a sketch of each with the principal dimensions, the loads
used, and the character of the end and center arrangements:
(1) The bridge over the Missouri river at Omaha; (2) the
bridge over the Thames river at New London, Conn; (3) the
bridge over the Arthur Kill on Staten Island, N.Y.; (4) the
bridge over the Harlem river at New York; (5) the bridge
built in 1897 at Duluth, Minn. ; (6) the four track bridge built
in 1895 over the Bronx river at New York.

ART. 25. HoRizoNTAL ROLLING DRAW BRIDGES.

A draw bridge which is pushed out horizontally on rollers
over the river and drawn back upon one bank when the water-
way is to be cleared, is plainly applicable only to a short span.
" When the bridge is closed it consists of two continuous spans
with respect to live load, while the dead load acts in the same
manner as if the bridge were open, provided that the ends are
merely locked. The stress computations are hence similar to
those given in Art. 16, and need no further explanation.

Figure 40 shows a more common case, where theré are two
parts AM and MD, which are locked together at /7 when the
bridge is closed. When the bridge is to be opened A/ is rolled
back upon the left bank and MD upon the right bank. Here
the river is underneath BC, and the pivots at B and C, together
with the spans A8 and CD are upon wheels or other arrange-
ments whereby they can be rolled horizontally backward from
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the shores. The shore spans A8 and (D may be shorter
in length than the river arms, and may have different styles
of webbing: Thedead ror L N NI T TNINIRN,
load stresses are here 44 = . L4 2p
the same whether the Fig. 4.

bridge be open or closed, as the locking pin at M can bring no
reactions upon'the truss.

The live load stresses are computed by the methods of the
previous articles as soon as the reactions due to a single load
are known. Let AB=CD =/, and BM = MC = 7'/ where »'
is usually greater than unity. Let the reactions at 4, B, C, D,
be called R, R;, R;, R,.

Case I. — A load P on the span A5 at a distance 4/ from 4.
The reactions are given by the formulas,

. P
R,=P(l —k)—m(k—ks),

R,=P(1—k)—R,, Ry= —sR,, Ry=Pk— R,
in which, for abbreviation, s represents the number (1 + #')/#'.
CasE II.— A load P on the span BM at a distance &(n'/)

from the joint /7. The reactions are:

!

Ry=—3}Pr(x —,é)—';—f(k—ks),

Ry = Pk—sR,,

Ry=—sR,=n'sP(1 —k)+sR,.
Here if all spans are equal, #/ =1 and s=2.

For example, if AB = 30 feet and BM = 60 feet, »' = 2, and

s=14. If aload be on the span B at a distance of 45 feet
from A/ the value of £ is 0.75, and from the table in Art. 13

the value of #— 4% is 0.3281. Then from the above formu-
las, R, =—0.3504 P, R, = 1.2891 P, Ry;=+ 0.2109 P, and
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R,=—0.1406 P. The stresses due to £ are now readily com-
puted in all parts of the truss.

Prob. 25. Draw the shear and moment diagrams for the case
of a single load on the span A5 ; also for a single load on the
arm BM.

ART. 26. HINGED LIFT BRIDGES.

In Fig. 41 is seen a simple hinged lift draw bridge supported
at one end and hinged at the other, it being movable in a
vertical plane around the hinge.

N A cable attached near the free
&;—: end of the bridge passes over a

pulley on the vertical tower and
supports a counterweight. An

- b E\ engine in the tower opens and

A B N
vAvAvA‘vAv closes the bridge, the office of the
e & ¢ d ™ counterweight being to economize
power.

Fig. 41.

When the bridge is closed for the passage of traffic, its trusses
are simple ones, which are computed by the methods of Part I.
As the bridge begins to open, additional stresses are applied to
the truss through the tension in the cable BG. To determine
these additional stresses, it will be convenient to resolve the
force acting at B into its horizontal and vertical components.
The horizontal component causes compression in the chord 57,
while the vertical component causes stresses in the webbing.
For example, let the truss in the figure have a span of 50 feet
and a depth of 6 feet, and let 5G be inclined at an angle of 45
degrees. Let the dead load per linear foot per truss be 400
pounds, all taken on the upper chord. The total load ¥ is then
20000 pounds, and thé stress in the cable is 17 680 pounds.
This gives a horizontal component of 12 500 pounds, which
produces compression in BF, and a vertical component of
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12 500 pounds, which causes positive shear in all diagonals
between B and F. As the bridge rises, the stresses due to
the cable decrease, and when it reaches a vertical position they
become zero; the dead load of the bridge, however, now causes
compression in BF.

Another method which has been proposed for a hinged lift
bridge is shown in Fig. 42. Here there is no tower and no
counterweight, but the cable is attached to the truss at 5B, and
passes over small pulleys on trestles at 2 and £ and then to
the engine. This method is best
adapted to a through bridge, and °
while the power required to lift
the structure is greater than in ,
the previous case, the chord com- Fig. 4.
pression due to the pull on the cable is largely avoided. When
the bridge is closed, the stresses are exactly as in a simple truss;
when it just begins to open, the stresses are as in a cantilever
arm. The principles of Parts I and II are entirely sufficient
. for the complete analysis.

Structures of the kind described in this article are sometimes
called bascule bridges, particularly in Europe, each arm being
termed a bascule leaf. They are generally used for short spans,
and are frequently made of plate girders, with a solid floor con-
struction. The largest bascules are those of the Tower bridge
in London, built in 1894, where each leaf is 100 feet in length;
this has also an overhead bridge, connecting the tops of towers,
which may be used by foot passengers when the bascule leaves
are open.

Prob. 26. When the truss in Fig. 41 just begins to open, show
that the stresses in Cr, D¢, CD, bc, due to the dead load and
cable pull, are + 3.3, —3.3, —20.8, + 12.4 kips. Also find
these stresses when the angle GBF is 30 degrees.
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ARrT. 27. OTHER FORMS OF LIFT BRIDGES.

A common form -of lift bridge for short spans and highway
traffic is a simple truss which is lifted bodily by means of cables
attached to its ends and passing upwards over pulleys in two
towers. A counterweight is usually provided in each tower to
balance the weight of the bridge and thus lessen the power
required to move it. These have been used for many years
over the Erie canal, and in the past decade several large
structures have been elsewhere erected. The largest, built by
WaADDELL in 1893 over the Chicago river, is a highway bridge
of 130 feet span and 350 feet width; it has a lift of 141 feet.
For description see Railroad Gazette, February 24, 1893, and
Transactions American Society of Civil Engmeers, January,

1895.

The Scherzer rolling lift bridge, of which two have been
built across the Chicago river, consists of two parts or arms
which are locked together when the bridge is closed. Each
part is supported on pedestals, at the top of which are hinges.
When the bridge is to be opened each arm rises around these
hinges while the lower portion of the truss rolls upon the abut-
ments. For a fuller description see Journal of Association of
Engineering Societies, December, 1895.

Two forms of bascule bridges have been built in Milwaukee,
over canals, which have a combined lifting and rolling motion.
As the river end rises the shore end falls and the latter is con-
strained to follow a certain curve by means of guides, these
guides being so arranged that the center of gravity of the leaf
or arm moves in a horizontal line. Hence no power is expended
in lifting weight, but only sufficient is required to overcome
inertia and frictional resistance. Descriptions of these struc-
tures will be found in Englneerlng News, March 7, 1895, and
: Apnl 22, 1897.
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Other modifications have also been suggested and tried for
lift bridges of short span. One of these is to make the bascule
arm in, two parts, and as it rises the middle part folds down-
ward upon the other one; this arrangement, which is suitable
only for a very light structure, is called a ‘jack-knife bridge ”;
see Engineering News, May 23, 1891, and November 27, 1896."
In Holland and England there are numerous bascules of the
plate girder type, which are generally operated by hydraulic
power, whereas in the United States electric power is used for
light structures and steam power for heavy ones. The bascule
type has the advantage that it can be opened more -quickly
than the swing bridge and it certainly offers less obstruction
to the water way. On the other hand it cannot be economically
built for long spans. In any particular case the local conditions
must be carefully studied by the engineer, and such a structure
be selected that the cost of construction and maintenance shall
be a minimum and the local requirements as to land and water
traffic be fulfilled in the most advantageous manner.

ART. 28. Power 10 OPEN A SwiNng BRIDGE.

The power used in opening a swing bridge is expended in
two ways: first, in overcoming the inertia of the structure or
putting it into motion ; and second, in overcoming the frictional
resistance of the air and of the pivots, wheels, or other moving
parts. The latter class of resistances requires experiment for
their complete investigation, while the former depends only
upon theory. It is, however, a fact that the laws of resistance
of inertia are not commonly well understood, and hence it may
be worth the while to attempt here a brief explanation.

Let AA represent the plan of a closed swing bridge which
is to be swung horizontally around into the position CC in ¢
seconds.  Starting from rest it is to acquire velocity uni-
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formly until it reaches the ‘position BB, where the velocity
is a maximum; then the velocity is to uniformly decrease
until it comes to rest in the position CC.

y 3 Let the weight of the bridge per linear
‘\3 AN foot be z and the length of each span
/ - AN \\‘< be /, so that the total weight is 2 w/.

[~ =N 4] .
AN RN At any distance z from the center
j\\ ;\> suppose there to be a weight ¥ which
ct " is to be moved horizontally by a constant
F;';""@ force F applied at the same distance from

the center. Let v be the velocity which
this force / gives to the weight /¥ in one second. Let g be
the velocity which the force of gravity would impart to W in
one second if it could fall vertically. Now, since forces are
proportional to the velocities they can impart in a given time,

v
w2 or, F=W g’ (1)
in which g has the constant value 32.16 feet per second. This
is the fundamental formula expressing the law of resistance of
inertia and giving the horizontal force / that acting constantly
for one second will generate the velocity » in a body whose
weight is W.

Now suppose a small particle ¥, at a distance 2 from the
center of the turntable. In passing from the position 44 to
the position BB this particle moves through the space } 7z in
the time 2. Its mean velocity is hence  7z/¢, and its velocity
when it reaches the position BB is mz/¢. As this velocity is
acquired in } # seconds, the velocity v acquired in one second is
2mz/f. The force required to produce this velocity is '
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Let P be a force, acting at a distance » from the center,
which actually puts the bridge into motion; then by moments
about the center,

Pr=3F=2T3Ws
g
in which the summation must be extended over the entire
bridge. To do this let » and y be coordinates of W with re-
spect to rectangular axes through the middle of 44 and CC;
then z2=2%2+ 32 Let & be the half width of the bridge, then
w/2 b is the weight per square foot, and the small weight W
may be expressed by @.w/24 where a is an elementary area
of the horizontal projection. The last equation now becomes,

Pr= b—"—;;’—i(ﬁaxg + Saj?),

in which 2222 and 3ay? are the rectangular moments of inertia
of the floor surface with respect to the two axes. Inserting the
values of these, the equation reduces to,

Pr:z«n-.zwl(l’+bz), )
37
in which 2w/ is the total weight of the swing bridge, / is the

half-length; and & the half-width; /, 4, and g should be ex-
pressed in feet, 2/ in pounds, and Z in seconds.

The force P is exerted through the distance }#» in }¢
seconds, and hence the power required to do this is

_%w_Pr (3)

" 5507

When the bridge comes to the position BB it attains its maxi-
mum velocity, and is then to slow up and come to rest at CC*
The work expended in slowing it up is equal to that expended
in putting it into motion, but part of this is furnished by the
frictional resistances.
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For example, take the heavy swing bridge erected over the
Harlem river in 1895, whose length is 390 feet, width 60 feet,
and total weight about 2500 net tons. Here /= 195 feet,
b = 30 feet, and 2w/ = 5000000 pounds. The time of open-
ing was specified as 1} minutes, or # =90 seconds. From (2)
the value of Pr is,

Py 6:28 X 5000000(195 + 309 _ 562 000,
3 X 32.2 X 902
and then from (3) the power required to overcome the inertia
of the bridge is 49.5 horse-powers.

The power required to overcome the frictional resistance
depends upon the coefficient of friction. This, according to the
investigations of BOLLER, may be taken at about 0.004. Then,
as the mean diameter of the wheel base is 50 feet, the power
required to overcome friction is 15.9 horse-powers. Accord-
ingly, 65.4 horse-powers are needed for both inertia and friction;
to this a proper allowance should be added for the effect of
wind.

Prob. 27. Find, for the aboy_e case, the force which is exerted
at the circumference of the rack circle in order to open the
bridge, the diameter of the rack circle being about 56 feet.
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CHAPTER IIL
CANTILEVER BRIDGES.
ART. 29. FUNDAMENTAL PRINCIPLE.

The word “cantilever ” originally meant a projecting arm or
bracket. A cantilever beam is a beam horizontally fixed at one
end and without support at the other. If a beam be laid on
two supports, and have the ends projecting beyond the sup-
ports, those ends may be called cantilever arms. Thus in the
draw bridge of Fig. 40 the arms BM and MC are cantilever
trusses, and the structure is to a certain extent a cantilever
bridge.

The idea of the cantilever bridge was first developed in the
attempt to avoid the disadvantages of continuity (Art. 12). In
a continuous bridge a slight elevation or depression of one
support causes great changes in reactions and stresses. . If,
however, the chords be cut near the inflection points for full
load, the inflection points for partial load will occur there also,
and thus the réactions will be statically determinate. In a
continuous truss of three spans, as in the first diagram of
Fig. 44, there are four inflection points, and RITTER proposed
about 1860 to cut one chord at these points, thus producing
thg arrangement shown in the second diagram. This proposed
truss involves the idea of the modern cantilever structure, but
it is defective in being cut at too many places.

A truss of three spans has four supports. For any load
there are four reactions, and to determine these four conditions
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are necessary. Two conditions are furnished by the principles
of statics, namely, that the sum

ya \

a e e “ of the vertical forces is zero and
/ \/ N \/ AV4 N\ . o

& [ = 2 that the sum of "their moment
M= z—4(——\ is zero about any center. By
Y= Vs Vs ) hinging the chords in two places,

Fig- «. as in the third and fourth dia-
grams of Fig. 44, two additional conditions are established,
since for each of these hinges the moment is zero. These
forms are thus statically determinate with regard to reactions
and stresses, so that a slight change of level in one support
produces no change in them. They have, however, the advan-
tages of continuity in respect to the distribution of stresses, —
since the shear and moment diagrams for full load are the
same as for the continuous truss. Thus the principal advantage
- of the continuous system is supposed to be preserved while its
greatest disadvantage is entirely avoided.

The Boyne viaduct, built in Ireland in 1855, was a continuous
lattice truss of three spans, the middle span being 267 feet and
each side span 141 feet. After erection the upper chord in
the middle span was cut at two points 170 feet apart and equi-
distant from the piers; as some compression was found to exist
at these points, the ends of the side spans were lowered slightly.
The object of cutting the chords is not clear, since it is stated
that they were riveted together again. It was, however, appar-
ently recognized that under a full uniform load the bridge
needed no upper chords near the places where they were cut.
See Proceedings of Institution of Civil Engineers, Vol. XIV,
1855. .

The Kentucky river bridge, built in 1875 by C. SHALER
SMITH, has three spans of 375 feet each. It was to be erected
over a river gorge 250 feet deep, where false works could not
be used, and accordingly the plan of building it out from the
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shores panel by.panel was adopted, the shore ends being se-
curely anchored during the operation. The ends rested upon
rock abutments, while the piers were metallic towers about
250 feet high, and hence liable to change in height under tem-
perature stresses. As the structure when finished would be
continuous, the disadvantage of the system was apparent, and
hence the chords were jointed in each side span at points
300 feet from the shore, thus making a structure like the third
diagram in Fig. 44. For illustrations of this bridge see Trans-
actions of American Society of Civil Engineers, November,
1878.

The third diagram in Fig. 44 shows two simple trusses at
the ends, and a truss upon two supports with projecting can-
tilever arms. The fourth diagram shows a simple truss at the
middle, and two side trusses with projecting cantilever arms;
the modern cantilever bridge is of this type, it being thus called
on account of the cantilever arms. It is particularly adapted
for use in localities where false works cannot be used in the
middle span, the truss being built out from opposite sides panel
by panel.

Prob. 28. In the third diagram of Fig. 44 let a be the dis-
tance from the end to the hinge, and & the distance between
the two hinges. Under a uniform load of w per linear unit,
show that each end reaction is }wa, and that each middle
reaction is § w(a + &).

Prob. 29. In the fourth diagram of Fig. 44 let 2 be the length
of the first span, & the distance from the second support to the
first hinge, and ¢ the distance between the hinges. Show that
the reactions for full uniform load are

Rl“"%w““%wbz-'-[w’ Ra—%w(“’*‘zb‘l")"'%“’bz-'-bc

Draw shear and moment diagrams when é=14a4, and c=a.
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ART. 30. HISTORICAL AND DESCRIPTIVE NOTES.

The idea of building out cantilever beams from opposite
shores of a stream, and then bridging the interval between
_ them by a simple beam, is an old one. An ancient structure
of this kind in Japan is described in Von Nostrand’s Magazine
for January, 1886, and one in Thibet of 112 feet in length is
illustrated in THOMAS PoPE’s Treatise on Bridge Architecture,
published at New York in 1811. This curious book of Poprk
is largely devoted to a design of his own, called the “flying
pendant lever bridge,” which was to be built out from the oppo-
site shores until the cantilever arms met at the middle, these
arms being anchored by huge abutments. With such a struc-
ture he proposed to bridge the Hudson river at New York, the
span being about 3000 feet. His scheme met with little en-
couragement, and it was indeed an impfacticable one.

The continuous bridges built in Europe from 1850 to 1870,
and the discussion of their advantages and disadvantages, led
to the development of the cantilever system in the manner
described in the last article. Before 1870, however, the sub-
ject was approached from another point of view, namely, from
that of the suspension systefn. In a suspension bridge, the truss
is supported partly by a cable and partly by inclined stays
which are attached to towers. It was proposed by TROWBRIDGE
to omit the cable and rely entirely upon the stays; as these
could not be conveniently extended to the center of the middle

span, he arranged to span the

ﬁ k Z? §& interval there by a simple truss,
£ A thus making a construction like

Fig. 45 Fig. 45. This is the principle
of the modern cantilever system, except that the towers and
stays are unnecessary.' Further information regarding this
idea and the influence it exerted is given in Engineering News,
December 29, 1883.
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A small cantilever bridge was built in 1880 over the Missis-
sippi River at Fort Snelling, Minn., but the history of the prac-
tical development of the system really dates from 1883, when
the structure over the river near Niagara Falls was completed by
C. C. ScHNEIDER. A smaller bridge by the. same engineer was
also built in 1883 over the Fraser river on the Canadian Pacific
Railroad, a sketch of which is given in Fig. 46. Here the end

A B c D E F
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Fig. 46.

spans AB and FE are each 105 feet long, the cantilever arms
BC and ED are each 105 feet, and the simple suspended truss
CD is also 105 feet. The panels are 15 feet in length, the
depth at 4 and F is 14 feet, the depth at B and E is 25 feet,
and the dépth of the central truss is 15 feet. The upper chords
are really extended across the spaces at C and D, but they are
provided with slotted joints so that no stresses can be trans-
mitted by them. At A4 and Z the trusses are tied down to the
abutments by anchor rods.

One-half of the Niagara bridge is shown in Fig. 47. The
anchor span 4B, is 195 feet, the pier panel BB, is 25 feet,

4 e BB (o

17\

Fig. 47:

the cantilever arm B,C is 175 feet, and the suspended truss is
120 feet, making a total length of 910 feet. It carries two rail-
road tracks. The pieces shown in broken lines over the pier
are inserted as stiffeners to the posts; those at C are jointed
so that they cannot transmit stresses. In erection, false works
were used under the end spans, while the cantilever arms and
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central truss were then built out panel by panel from the piers
until they could be joined at the middle. The erection was com-
pleted on the Canadian side in 73 days, and on the United
States side in 84 days, and the cost of the structure was
about one-sixth of that of the suspension bridge of RoEBLING,
which then spanned the river near it. Reference is made to
ScHNEIDER’S paper in Transactions American Society of Civil
Engineers, November, 1885, for a full account of the design
and erection.

It would be difficult to record even the names and lengths of
the numerous cantilever structures that have been erected since
1883, but a few will be noted in subsequent pages. The longest
in the United States is that completed by Morison in 1892 over
the Mississippi river at Memphis, one of whose spans is 790 feet
long. The proposed bridge over the Mississippi at New Orleans
is to have three spans with a total length of 2274 feet, the
middle opening being 1070 feet, and one proposed to cross the
St. Lawrence river at Montreal is to have one of the spans 1250
feet in length.

The great Forth bridge in Scotland, the largest bridge in the
" world, is of the cantilever type, and has two main spans each of
1700 feet, with shore spans of 685 feet. The truss is 350 feet
deep over the towers, and of corresponding gigantic proportions
throughout. It was completed in 1889 after six years of work.
See London Engineering, Dec. 6, 1889, for detailed description
and illustrations. :

Prob. 30. Consult the engineering journals, find accounts of
the following cantilever bridges, and give a diagram of each
with the principal dimensions: (a) The St. John's bridge, 1885 ;
() the Louisville and New Albany bridge, 1886; (¢) the Pough-
keepsie bridge, 1887; (&) the Sukkur bridge, 1888; (¢) the
Philadelphia bridge, 1889; (f) the Red Rock bridge, 1890;
(g) the Memphis bridge, 1892; (%) the New Orleans bridge,

1899.
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ART. 31. CLASSIFICATION.

A cantilever structure may be built as a deck bridge or as a
through bridge ; the webbing may be of any usual type; it may
have riveted or pin connections. All the remarks in Parts T
and III regarding the economy of different styles of webbing
apply also to the trusses used in the cantilever system. The
classification now to be explained is that peculiar to the system;
it relates to the number of supports at the pier and to the
manner of anchoring the spans.

Cantilever bridges usually have three spans, as in Figs. 46
and 47. The simplest style is that shown in Fig. 46, where the
truss is supported at the piers upon a single pin. Figure 47,
on the other hand, shows two points of support at the pier, and
it will be noticed that there are no diagonals in the panel over
the pier; this is to avoid the continuity that would otherwise
exist, for if shears could be transmitted through this panel AC
would be a continuous girder, and a load on B,C would cause a
negative reaction at B,. . By the omission of the diagonals this
is avoided, and the reactions at B, and B, are both positive for
all loads on the cantilever arm or central truss (Art. 20).

In either of these forms a load between the piers causes a
negative reaction at the support A4, and this is the greater the
shorter the length of the shore span A4B;,. To balance the
negative reaction which may be caused by the live load, it is
necessary that the truss should be anchored to the abutment
at A. The end span is hence often called an anchor span or
anchor arm. Thus in Fig. 46, AB is the ‘anchor span,’ BC
is the ‘cantilever arm,’ and CD is the ‘suspended truss,’ while
BE is called the ‘central span’ or the ‘cantilever span,’ since
it contains the two cantilever arms. The cantilever span BE
is thus held in position by the two anchor spans 48 and EF.
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When the cantilever system is to be used for more than three
spans, one of the arrangements shown in Fig. 48 is used. In
the upper diagram BC and DE are cantilever spans, while 48
and EF are anchor spans, and CD is called an ‘intermediate

L A\V4 \/ AV4 AV4 \
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Fig. ¢8.

span,” because it balances the two cantilever spans on either
side ; this is the arrangement in the Poughkeepsie bridge, there
being, however, three cantilever spans and two intermediate
spans. In the lower diagram &c¢ is a cantilever span, aé an
anchor span, and ¢ an intermediate span, while de is partly a
cantilever arm 4f and partly a simple truss fe; this is the
arrangement in the Memphis bridge. In Fig. 48 there is
shown but one point of support at each pier; two may be used,
however, if there be no diagonals in the panel above them.

The suspended truss which connects the ends of the two
cantilever arms is merely a simple truss supported at its ends.
It evidently receives no stresses except those due to the loads
upon its own floor, such being transmitted to the ends of the
cantilever arms exactly as if these ends were abutments.  Like-
wise, in the lower diagram in Fig. 48, the simple truss ¢f is
stressed only by the loads that come upon it. It is unnecessary
to discuss these simple trusses in the following pages, since
Parts I, II, and III treat of them in great detail.

Prob. 31. In the upper diagram of Fig. 48 let a load P be at
the middle of BC, and let AR=/, BC=3/,CD =21, also let
the length of the suspended span in BC be 2/, Show that the
rcactions at the supports A, B, C, D, E, F, are —} P, +3} 7,
+§P, —-}P, 00
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ART. 32. THE CANTILEVER ARM.
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In Fig. 49 the simple suspended truss and one cantilever
arm are shown ; let their 1engths VI PN ) s
be ¢ and 4. Under a uniform
load of w per linear unit the -
simple truss transfers {wc to ‘""
each of its ends where it hangs
upon the cantilever arm like a Fig. 4.
concentrated load. At any section in the cantilever arm, dis-
tant x from its end, the shear and moment are
V=—}we—wr, M= —}wexr — } wa?,
and the full line curve in the lower part of Fig. 49 shows the
distribution of the moments.

For a load P on the simple truss, at a distance 4c from the
left end, the amount P# is transferred to the right end, where
it hangs upon the cantilever as a concentrated load. The shear
and moment due to this load at any section in the cantilever
arm are '

V=-PF, = — Pkx,
and the broken line in Fig. 49 shows the distribution of
moments. For a load 2 on the cantilever arm itself, the
shear at any section between it and the pier is — 2, and the
moment is — Pz, where = is the distance between load and
section.

The shear is always negative for all sections in the cantilever
arm, and hence all web members that slope upward toward the
pier are in tension. The moment being always negative shows
that the upper chord is in tension and the lower in compression.
The greatest shear and moment occur at the pier.

At any section in the cantilever arm, the minimum negative
shear and moment occur under dead load and the maximum
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under a full live load. The computation of stresses being
made for dead load by the methods of Part I and Part II, those
for live load are found by multiplying the former by the ratio
of live load to dead. The minimum stresses are those due to
dead load; the maximum stresses are those due to both dead
and live load.

For example, let Fig. 50 represent a part of a deck cantilever
truss, consisting of the suspended truss of four panels and the
cantilever arm of four panels.

N M L H G
]m X Let the panel length be 15 feet,
) % the depth at M be 16 feet, the

Fig- 50. , depth at G be 19 feet, the dead

panel load be 12 000 pounds, or 12 kips, and the live panel load
36 kips. It is required to compute the stresses for LH, HG,
Hl, Hh.

Taking dead load first, there are 30 kips at A/ and 12 kips at
each of the other panel points between #/ and G. The moment
for / as a center is — 30 X 30— 12 X 15 = — 1080, and that.for
% as a center is — 1890 kip-feet. As the lever arms of LA and
HG are 17 and 18 feet, the dead load stresses for these chords
are + 63.53 and + 105.00 kips. The difference of these stresses,
or + 41.47 kips, is the horizontal component of the stress in /47,
whence H/= 41.47V152 4+ 172/15 = + 62.68 kips. The vertical
component of the stress in A7, plus the panel load at #, is the
stress for A%, whence Hk = — 41.47 X 17/15 — 12.00 = — 59.00
kips. . '

As the live load is three times the dead load, the live load
stresses are three times, and the maximum stresses are four
times, the above values. Thus the final maximum and mini-
mum stresses, to the nearest kip, are as follows: +64 and
+ 2584 for LH, + 105 and + 420 for HG, + 63 and + 251 for
HI, and — 59 and — 236 for A% Here, as always, + denotes
tension, and — denotes compression.
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Prob. 32. Compute the maximum and minimum stresses for
all the members of Fig. so.

ART. 33. THE ANCHOR SPAN.

In Figs. 51 and 52 are shown one-half of a cantilever bridge
of three spans, the former having but one point of support at
the pier, while the latter has two, these cases corresponding

ne (4 (3

Fig. s1. Fig. 52.

ftm

to those of Figs. 46 and 47. Below each figure the full line
curve shows the distribution of moments for uniform load,
while the broken line shows the distribution of moments for
a single load P on the cantilever arm. Let the length of the
end anchor span 7-2 be denoted by @, that of the cantilever
arm by 4, and that of the suspended truss by ¢. The stresses
in the anchor span can be computed when the reaction R; due
to a single load in all positions has been determined.

Case I, One Support at Pier. — Here R,, R,, and P are the
vertical forces. The sum of these is zero, and the sum of their
moments with respect to the end of the cantilever arm is also
zero. Thus the reactions are found to be as follows:

Let P be a load on the anchor span at a distance 42 from the
left end, where £ is a number less than unity. The reactions are

R, =P(1— &), R, = Pk;

that is, all loads on the anchor span act exactly as if this were a
simple beam or truss.
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For a load P on the cantilever arm at a distance 44 from
the support 2, the reactions are found to be '

R =—P% R,=P + P
a a

and thus all loads on this arm give negative reactions at 7.

Let ¥ be the total uniform load on the suspended truss; one-
half of this is transferred to the end of the cantilever arm, and

R1="%Wg» - R2=%W+%W§’

while the other half of I is transferred to the supports on the
right.

Case II, Two Supports at Pier. — Here there are no diago-
nals in the panel over the pier, and hence no shear can be
transmitted through that panel. Accordingly, for a load on
the anchor span, R, + R, — P = 0; and for a load beyond the
pier, R, + R, =o0. These conditions, in addition to those of
statics, determine the reactions.

For a load P on the anchor span at a distance £z from the
left end, the reactions are found to be
Ry=+P(1—k), Ry=+Pk Ry=o0,
and thus these loads affect the anchor span like a simple truss.

For a load P on the cantilever arm at a distance 44 from
the support 3, the reactions have the values
R=—pP¥ g —pE R _p
a a’

and they are independent of the distance between supports
2 and 3.

For a total uniform load W on the suspended truss 4 W is
transferred to its left end, and

Ri=—tWs R=}wl Ry=}w.
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These agree with those found from the formulas of the last
paragraph by making #=1,and P =} W. ‘

In comparing the two cases it is seen that the reaction R, is
, the same for both, and hence the stresses in the anchor span are
the same in both cases. It is also noticed that R, of the first
case is always equal to R, + R of the second case. By con-
sidering the values of the reaction R; due to the several loads
the distribution of live load to give the largest shears and
moments for any section in the anchor span is at once derived.

The largest positive shear due to live load occurs when the
live load extends from the section to the right hand support 2.
The largest negative shear occurs when the live load extends
from the section to the left hand support z, and also covers the
cantilever arm and the suspended truss.

The largest positive moment due to live load occurs when
the anchor arm is fully loaded. The largest negative moment
occurs when the cantilever arm and the suspended truss are
fully loaded.

These rules imply that the live panel loads are equal. If
they are unequal, as in the case of locomotive excess or loco-
motive wheel loads, the heavier panel loads are to be put as
near the section as possible in the case of the shears, and for the
positive moments the same position is to be used as for simple
trusses (Part I, Art. 61). For the negative moments the loco-
motive should be put over the end of the cantilever arm and be
preceded and followed by the train load.

The greatest negative reaction R, is the stress that comes on
the anchor rods. If w be the dead load per linear foot, the
reaction R, due to loads on the anchor span is + } wa and that
due to loads on the central span is — 4 w(8 + éc)/a. If w, be
the live load per linear foot, then

Ry=jwa—}(w+ w) ¥

a




88 CANTILEVER BRIDGES. Cuar. III.

is the greatest negative reaction. For example, in the Niagara
cantilever bridge, a = 195 feet, 6 =175 feet, ¢ = 120 feet, w=
4200 and =, = 5000 pounds per linear foot. Then the maximum
negative reaction is 878 0oo pounds. To resist this, eight anchor
rods are provided, each 3} inches square, giving a cross-section
of 843 square inches; hence the maximum stress upon these
rods is nearly 10 500 pounds per square inch.

Prob. 33. When the anchor span is covered with the live load,
show that there may be a positive moment when (w + w,)? is
greater than w(4% + éc), and find the point where the maximum
positive moment occurs.

ART. 34. AN ANCHOR TRuss.

In order to illustrate the method of computing the stresses
in the end anchor truss of a cantilever bridge the case of Fig.
53 will be considered, the cantilever arm and suspended truss
being the same as that discussed in Art. 32.- The anchor span
AF is 75 feet, the cantilever arm GM is 60 feet, and the sus-
pended truss MV is 60 feet. The panel length is 15 feet, the

4 B C D E F ¢ H L o N depth Bé is
A X m 15 feet, and
b ¢ d T k¢ the depth at
Fig. 53. the pier is

19 feet. The truss is of the Pratt type, where the diagonals
can take only tension. The dead panel load is 12 kips, and the
live panel load 36 kips, both on the upper chord. It is required
to compute the maximum and minimum stresses for the mem-
bers in the panel CcdD.

The reactions R, for each live panel load are first found.
The values are as follows, those for the loads from G to NV
being added together:

Load at B c D E G-N Sum
R = + 28.8 + 21.6 + 14.4 4 7.2 — 115.2 — 43.2
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The live load reaction R, is thus — 43.2 kips when the entire
bridge is covered with live load, and hence the dead load re-
action is — 14.4 kips. The half panel load at 4 is here left
out of account, since its reaction is equal to itself; also the
panel loads at 7 and G are omitted, as they stress only the
posts directly beneath them and produce no reactions at 4.

For the vertical Dd let a section be passed cutting DE and
¢d; the minimum stress occurs when £ is loaded, and the max-
imum stress when the rest of the bridge is covered. Let p be
the panel length; the center of moments for Dd is at a distance
15 p to the left of 4, and the equations of moments for the two
cases of loading are,

(144 —72)15p+12(16p + 17p+18p)+ S x 18p =0,

. (14.4+504)1590 +48(16p+ 179+ 18p)+ Sx 18p=0,
from which — 40 and — 190 kips are the minimum and maxi-
mum stresses for the vertical strut Dd.

For the diagonal D¢ the section cuts CD and ¢4; for mini-
mum stress the points D and £ are loaded, and for maximum
stress all other points. These stresses are best found by
moments, using the method above, thus,

(14.4 —21.6)15p + 12(16p + 17_;)—5 X 13.5p =0,

(144 +64.8)15p 4+ 48(16p+ 179) —Sx 13.5p =0,
from which + 21 and + 176 are the minimum and maximum
for De.

For the chords CD and cd the lever arms are 17 and 17.95
feet. The dead load moments are — 612 and — 1188 kip-feet;
for live load over the anchor span the moments are + 1620 and
+ 1620; for live load over the central span they are — 3456
and — 5184 kip-feet. Hence the maximum stresses for CD and
cd are + 254 and — 375 kips, while the minimum stresses are
— 63 and + 26 kips. These chords must accordingly be de-
signed to take both tension and compression.
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It is thus seen that the computation of stresses in trusses of
a cantilever bridge is made by the same principles as for a
simple truss, the only difference being that the distributions of
live load, and the reactions of the supports, are not the same in
the two cases. The graphic methods of Part II may be also
applied to draw’stress diagrams for dead load and for the dif-
ferent cases of live load, and by combining the values scaled
‘from these the maximum and minimum stresses are obtained.

Prob. 34. Show that the maximum stress upon the anchor
rods at A4, in Fig. 53, is 129 600 pounds. Compute the maxi-
mum and minimum stresses for all the members in the anchor
span of Fig. 53. .

ART. 35. THE INTERMEDIATE SPAN.

When the cantilever system is applied to four or five spans,
the arrangement of Fig. 48 is adopted, and an intermediate
span is used to connect two cantilever arms. In this span the
chords of the trusses are parallel, and the webbing may be
either of the Pratt or Warren type. If the span be sufficiently
long, the dead load will overbalance the negative reactions due
to live load on the adjacent cantilever arms, and thus anchor
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rods will not be required to tie the truss down to the piers. In
Fig. 54 is shown the case where the truss is supported upon
one point at each pier, while Fig. 55 gives the case where each
pier presents two points of support, there being no diagonals in
the panel above them. The distribution of moments due to
dead load is shown in each case by the parabolic curves; if the
intermediate span be short, there may be, however, no positive
moments in that span under uniform load.
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Let / be the length of the intermediate span, & the length of
the cantilever arm on the left, and & the length of that on the
right, ¢ the length of the suspended truss on the left, and ¢’ the
length of that on the right. The reactions R, and R,, due to a
load in various positions, are first to be found, and these are
determined by the simplest principles of statics.

Any load in the intermediate span / acts exactly as if that
span were a simple truss. A load P at a distance 4/ from the
left end gives R;=P(1 —#4) for Fig. 54, and R, =0 and
Ry= P(1 —#) for Fig. 55. For a uniform load w/, one-half of
this is supported at 7 in Fig. 54, and at 2 in Fig. s55.

For a load P on the left cantilever arm at a distance 44 from
1, the reactions at the left pier are found by taking the center
of moments at the right pier. Accordingly

for Fig. 54, Ry=P + P ‘57”,
for Fig. 55, R,=P, Ry= P’%

Likewise for a load P on the right cantilever at a distance &%
from its left end, the reactions at the left pier are

for Fig. 54, R;= —--Pka,,

)14
2
If in these Z be made unity and P be made one-half the load on
the suspended truss, the reactions due to the loads on the two
suspended trusses are found. Thus all loads on the left of the
intermediate span give positive reactions at the left pier, while
those on the right give negative reactions. By considering
these reactions, the rules for placing the live load so as to give
the largest shears and moments at any section in the inter-
mediate span are readily determined.

for Fig. 55, R,=0, Ry=—
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The largest positive shear at any section occurs when the live
load covers the truss on the left of z, and also the segment
between the section and the right pier. The largest negative
shear occurs when the live load covers the segment between
the left pier and the section, and also the truss on the right of
the right-hand pier.

The largest positive moment due to live load occurs when the
span is fully loaded. The largest negative moment occurs when
the trusses on the right and left of the piers are fully lpaded.

The length of the intermediate span required in order that
there may be no negative reaction is found as follows: -Let the
cantilever span on the right be longer than that on the left, or
o' + 3¢ be greater than 6+4c. Let w be dead load, and w,
be live load per linear unit. Then if there be no reaction at z
in Fig. 54, the dead load on the left of the right pier balances
the dead and live load on the right of the pier, or

Fw+w)(Fd +6%)—=twe(b+1) -t w(b+IP=o0, - |

which gives a quadratic equation for computing 4+ 7/ For
example, ‘take the case where & =4’ =60 feet, ¢ = ¢/ = 100 feet,
w=1200 and w;=3000 pounds per linear foot. Then
(6+ /¢ +100(6+/)=33600, from which &+ /=140, and
hence /=80 feet. Thus, in order that R, may always be posi-
tive, the length / must be longer than 8o feet.

Prob. 35. Deduce for the case of Fig. 54 the equation of con-
dition that the reaction R, is zero, and find the length / when
b =60, b' =65, c=90, ¢’ =100 feet, w = 1400 and w, = 3200
pounds per linear foot.

ART. 36. AN INTERMEDIATE TRUSS.

Let the intermediate truss in Fig. 56 have a span of 75 feet.
On the left is a suspended truss 45 feet long and a cantilever
" arm 45 feet long. On the right is a suspended truss 60 feet
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long and a cantilever arm 60 feet long. The intermediate span
has five panels each 15 feet long and 19 feet deep. The dead
load per panel is 12000 pounds, or 12 kips, and the live

M G 4 8B ¢ D E F ¢
IR—Aa2 c L4 N/
Fig. s5.

load is 36 kips per panel, both being taken on the upper chord.
The diagonals can take only tension, but all other members
may take both tension and compression. It is required to
compute the maximum and minimum stresses.

The reactions due to the live panel load of 36 kips are first
computed, those for loads on MG being added together, as
also those for G'M':

Loads at ¥—G B c D E G-M Sum
R;= +144.0 o o o o 0 41440
Ry= +648 +288 +21.6 +144 +7.2 —1152 + 21.6

Here the panel loads G, 4, F, G' are omitted because they
produce no stresses except in the posts directly beneath them.
The sums give the reactions under full live load, and hence the
dead load reactions are R, = +48.0 and + 7.2 kips. The truss
must accordingly be anchored at 2 so as to take the negative
reaction — 115.2 + 7.2 = — 108.0 kips.

For the web members the rule S= Vsec @ will here apply,
since the chords are parallel (Part I, Art. 26). The value of
sec 0 is 1.296 for the diagonals, and unity for the verticals. For
each web member the dead load shear is first found, and then
the live load shears for the two cases of loading established
in the last article.

For the diagonals in the panel BécC let a section be passed
cutting the two chords. The dead load shear is the sum of the
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dead load reactions at 7 and 2 minus all dead loads on the left
of the section, or

V=480+472—5 x 12=—4.8 kips;

and as this is negative, (4 is stressed under dead load. For
live load on MG and CF the reactions are Rl + 144.0,
R, =+ 108.0, and the shear is

V=4 144.0 + 108.0 — 4 X 36 = + 108.0 kips.

For live load on 4B and G'M', the reactions are R, =o,
Ry = —50.4, and

V= —50.4 — 36.0=— 86.4 kips.

Thus the largest positive shear is + 103.2, which gives 133.7
kips for the maximum tension in C4; and the largest negative
shear is —91.2, which gives 118.2 kips for the maximum ten-
sion in Bc. The minimum stress for each diagonal is zero,
which occurs when the other one is under tension. ’

The vertical (¢ receives its maximum compression when Be
has its greatest tension, thus max. C¢r = — 103.2 kips; but its
minimum compression is the dead panel load 12 kips, which
occurs when (¥ and Cd are not stressed.

For the chord &c the first case of loading is live load on AF;
this gives the shear in the panel as + 36.0, and the dead load
shear is — 4.8, as found above. Thus, the resultant shear being
positive, Bc is under stress, and the center of .moments is at 5.
For dead load the equation of moments is

M=48x 30+ 7.2 X 15 —12(45 +60 + 75 + 75) = — 1512,

and for the live load M =72 x 15 =+ 1080. Accordingly the
combined moment is — 432 kip-feet, which gives — 22.7 kips as
the minimum stress in &c.

For éc the second case of loading is live load on MG and
G'M'; this gives a resultant negative shear in the panel, which



ART. 37. GRAPHIC METHODS. 95

brings C4 under stress, and thus the center of moments is at C.
For dead and live loads the moments are

M =48 x 45 + 7.2 x 30 — 12(15 + 60 + 75 + 90 + 90)= — 1558,
M= 144 X 45 — 50.4 X 30 — 36(60 + 75 + 90 + 90)= — 6372.

Hence the combined moment for this case is — 7930 kip-feet,
which gives — 417.4 kips as the maximum stress in éc. Accord-
ingly the chord éc is always under compression, whereas in a
simple truss the lower chord receives only tensile stresses.

The stresses in the intermediate span are seen to be similar
to those in the middle span of a continuous truss of three spans,
the upper chords being in tension over the piers. To secure
full economy of construction, the length of the intermediate

-truss for Fig. 56 should be longer than 75 feet in order to
increase the positive moments near the middle of the span, and
avoid the negative reactions.

Prob. 36. Compute the maximum and minimum stresses for
all members of the intermediate truss in Fig. 56.

ARrT. 37. GraPHIC METHODS.

As the suspended truss is a simple truss, supported either
by two cantilevers or by one cantilever and an abutment, the
methods of determining the maximum and minimum stresses in
its members are the same as those given in Part II.

The positions of the live load which produce the maximum
and minimum stresses in the members of the anchor, cantilever,
and intermediate trusses are given in Arts. 32, 33, and 35, and
hence no further reference to that subject is needed.

The resolution of the shear, as explained in Art. 50 of Part
II, may be conveniently used for the web members after the
required bending moments are found. The quotients obtained
by dividing the bending moment at each extremity of any diag-
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onal by the length of its horizontal projection may be laid off as
ordinates in the same direction if the moments are either both
positive or both negative. If, however, one moment is negative
~ and the other positive, as may occur in the anchor and inter-
mediate trusses, the ordinates must be laid off in opposite direc-
tions. This requires the diagonal to be produced to meet one
of the parallels to a chord member beyond the truss diagram.
The resulting form of the force polygon is a double triangle.

Whether the chord" stresses are preferably found by this
method or by dividing the bending moment by the lever arm
of the chord depends upon whether the bracing contains verti-
cals or not.

In order to find the bending moments in the anchor and
intermediate spans it is desirable to know the relation which
exists between the bending moments of a beam or truss with
one or two overhanging ends, and the bending moments of the
same truss when the loads on the overhanging ends or canti-
levers are removed, and the truss consequently acts as a simple
one.

7 g 1% 2 |2
) 15 I
1 ;
03 o o 2
a JF _ il IR f

Fig. 57.

In Fig. 57 the loads 7, and P are transferred to the ends of
the cantilevers by the adjacent suspended trusses respectively.
After determining the reactions by means of an equilibrium
polygon or moment diagram like the upper one in Fig. 16,
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Art. 11, Part II, the moment diagram in Fig. 57 was constructed
by using the three poles o,, 0,, and o4, located with the same
pole distance directly opposite 2, », and # respectively. This
arrangement makes the line adcd a single horizontal right line.
Let the line fe be drawn next. If the loads P,, Py, and P,
-on the cantilevers be removed, the truss becomes a simple one
whose span is /, supporting the loads P,, Py, and P,, and its
moment diagram is the one whose closing line or axis is fe, all
its ordinates being positive. For the section shown the ordi-
nate is /. If, on the other hand, the truss supports only the
loads on the cantilevers, the corresponding moment diagram is
afeda, all of whose ordinates are negative. On drawing the
line fe, it is seen that the ordinate at the given section is

_ (l—;xys +—§ _y4>' When the truss supports all the loads P,

to Py inclusive, the ordinate at the section is equal to the alge-
braic sum of the two ordinates whose values are given above;
that is, '

—y -tz 2
‘ Y=y ARG
On multiplying both members of this equation by #, and
replacing Hy, Hy', — Hygand — Hy,by M, M', M, and M,
respectively, the following required relation is obtained :

l—x x
7 M3 +74M4,

in which #' is the bending moment for the simple truss, wkile
My and M are the moments of the given truss at its supports.
In substituting numerical values for 47; and 7, their signs,
which are always negative, must be taken into account. The
preceding equation will apply also to an anchor span by making
the bending moment at the anchorage equal to zero.

M=M +

When the chords are parallel, the web stresses are preferably
obtained from the vertical shears. Let it be required to find
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the relation between the shears corresponding to that between
the bending moments given above. The rays o,s and 0,7 are
parallel to the two sides of the moment diagram cut by the
section when all the loads are on the truss, and therefore #s
gives the magnitude of the vertical shear V. Now let the ray
0,7 be drawn parallel to the closing line fe. The rays 0,5 and
o7 are parallel to the two sides of the moment diagram for the
simple truss which are cut by the section, and hence rs gives
the magnitude of the vertical shear /. For a similar reason
nr gives the magnitude of the vertical shear when the truss sup-
ports only the loads on the cantilevers. Let ge be drawn
through ¢ parallel to éc; then from the similar triangles ognr
and ¢gf the value of #7 is found to be — A (y, —y;)//, it being
remembered that the ordinates y, and y; must be introduced
with the negative sign. After substituting A/, and M, for
— Hyg and — Hy,, the required value of the vertical shear is
found to be .
v=p+Zaz - Yy

The preceding investigation, together with the fact that the
bending moments are zero at the ends of the cantilever bridge
and at the extrémities of the suspended truss, lead to the follow-
ing method of constructing the moment diagram for the entire
bridge for any given load.

A % 7
L s i A

| V Uy,
f £ Tk ) ? f

Fig. s8.

Let the bridge shown in Fig. 58 have a uniform load extend-
ing over its entire length. On the horizontal axis f7 let the
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parabolic moment diagrams be constructed under the supposi-
tion that the truss for each span is a simple one. Now locating
the points o, 7, and #4 directly below the ends of the suspended
trusses, these points, together with f and 7, determine the closing
lines or axes for the several spans. The line pm is first drawn
through ¢ and #, and its extremity joined with £ N
after which the line ;/ is drawn through #, and its /‘};{Si"
extremity / joined with . On the load line in ":?t‘*jé i
Fig. 59, ab, bc, cd, and de represent the total loads i Ige’
on the respective spans, all the poles are located 7. 5"x.
at the same pole distance, while the rays meeting i {
the load line at @, 4, ¢, 4, and ¢ are parallel respec- i"l'fj . B
tively to the tangents of the parabolas at the points 8/

/i & 4, i, and j. By drawing through each polea X7~
ray parallel to the closing line of the correspond- ‘\J 2!
ing span the reactions are obtained as indicated. §,"I R
To find the shear at any point, as at the left end o}:\x
of the suspended truss in the second span, a ray AN &e"%.
00’ is drawn parallel to the tangent to the parabola Fig. 5

at o, and as 0,0'' is parallel to pm, the shear is §''¢/,

and is positive. The moment at any section of the truss is
found by multiplying the corresponding ordinate y of the mo-
ment diagram by the pole distance /, the ordinate being meas-
ured by the linear scale, and /7 by the scale of force used in
laying off the load line. Thus, if y be in feet and A in kips,
the bending moment Ay is in kip-feet.

If the load consists of equal panel loads, the diagrams will
consist of polygons whose vertices lie on the given parabolas
in the verticals drawn through the panel points of the loaded
chord.

Prob. 37. Find the maximum and minimum stresses in all
the members of the anchor truss in Fig. 53.
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ART. 38. EconNoMic LENGTHS.

When a cantilever bridge is to be built, the positions of the
abutments and piers will usually be largely determined by
local considerations. The most favorable location for a canti-
lever structure of three spans is a river gorge where the piers
are to be built near the water edges, and the abutment anchor-
ages near the top of the banks. If the positions of the two
abutments are determined, and the positions of the piers may
be more or less varied, the question arises as to what are the -
proper lengths of the anchor spans, cantilever arms, and sus-
pended truss, in order that the truss may contain the least
amount of material.

An approximate ‘solution of this problem may be made by
considering only the chords of the trusses and regarding the
material in these chords as proportional to the areas of the
moment curves. Let Fig. 60 represent one-half of the three-
span structure, the length of the anchor arm being a, of the
4 cantilever arm 4, and of the sus-

L
[y L
g d 5. ¢~ pended trussc. When the anchor
A
418 - span is covered with live load, let
A, be the moment area due to
Fig. 6o. - combined dead and live loads;

when the central span is covered with live load, let 4, B, C, be
the moment areas due to combined dead and live loads. If a
negative reaction exists at the left under full uniform load, every
ordinate in A4 will be greater numerically than the corresponding
one in 4,. Thus 4, B, C, are the moment areas proportional
to the material in the chords, and it is required to find the
lengths a, b, ¢, in order that the sum of these areas shall be a
minimum.  Since the distance L between the abutments is
fixed, 2a + 2 &+ c must equal L. Also since the end reaction
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under full load is supposed to be negative 2? must be equal to
or be less than &2 + é¢, as shown in Art 29.

Let w, be the dead and w, the live load per linear unit, and
w their sum. For the suspended truss the bending moment at
any section under full load is § wer — }w2? and the area C,
of one-half the moment curve, s,

ke
C= %wf (cx = 2% dr =g wed

Again, for the cantilever arm the bending moment at any sec-
tion is — } wer — 4 wa? and the moment area B is

B= _%wj;b(qu-xz)dx: -—A}Iwb’c—%'wbs.

For the anchor arm the -bending moment at any section is
R x — } wa?, where the reaction R, is that due to dead load on
the anchor span and dead plus live load on the central span.
The area 4 is then

A =£ (Rlx—x}wlxz)dx= Tli'wlas"i'w(ab’+a&c)

The area C is one of positive rhoments, while 4 and B are those
of negative moments. In taking the sum all should be regarded
as essentially positive, and thus the quantity

g w(6ab?+6abc+ 4 8+ 6 8 + 3) — {5 w,ab (Y)
is the expression for the sum of the three moment areas.

Substituting in this expression the value of & in terms of Z,
namely, 4 = }(L —c — 2 a), it reduces to

w(L3—3L% — 3 LA+ 405+ 302 + 48) — Ly wad  (2)

Differentiating this with respect to ¢, putting the derivative
equal to zero, and solving, there results ¢ = } (L — a), which is
the value of ¢ that renders the quantity of material a minimum.
On attempting to find the value of & which produces a mini-
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mum, it is seen that the function continually decreases as a
increases, but that there is no algebraic minimum within the
limit imposed. Hence a? = # + bc gives the largest allowable
value of 2 in this investigation. Accordingly three conditions
are found connecting 4, 4, and ¢, and from these
a=o0212L, b=0091 L, c=0.394L

are the lengths which make the above moment sum the least
possible. Thus the suspended truss should be about 4} times,
and the anchor span about 2} times the length of the cantilever
arm.

The above results suppose that the end reaction under full
load is zero, and it has been shown that if the length 2 be less
than 0.212 L, the quantity of material will be greater. It does
not follow, however, that 2 cannot be greater than 0.212 L. To
investigate this case an expression for the moment sum must be
established by regarding the reaction as positive. Without giv-
ing the work here, it may be said that « will be found to be
about 20 per cent greater than the above value, while both &
and ¢ will be smaller.

The problem may also be put in a different way. Let the
span / between the piers be given, as also the anchor span a,
and let it be required to find the values of & and ¢ that render
the chord material a minimum. The expression for the sum
of the moment areas is the same as before. In this put
6=3}(/—c¢), and then differentiate with respect to ¢, thus
deriving

6=1(—a) c=3(/+a)
as was first shown by MArRBURG. For example, if @ = }/, then
b=13/ and ¢ =%/ Again, if the anchor arm be fixed at 165
feet, and the central span at 660 feet, the cantilever arm should
be 124 feet, and the suspended truss 412 feet; for the Red
Rock bridge a is 165 feet and / is 660 feet, while & is 165 and ¢
is 330 feet.
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In the above investigation the material required for anchor
rods has not been considered; this will tend in practice to
make the suspended truss a little longer than the above results.
The influence of the webbing will also be appreciable as well as
that of the lateral wind bracing. Moreover, the dead load is
not perfectly uniform, and the chords cannot vary in section
exactly as the moment areas require. For these reasons the
above conclusions are to be regarded merely as rough guides in
making a design. It is probable, however, that in many canti-
lever structures the suspended truss has been made too short
and the cantilever arms too long for the best economic results.
See a valuable paper by MARBURG in Proceedings of Engineers’
Club of Philadelphia, July, 1896. .

Prob. 38. Prove, if the material in the anchor rods be taken
into account, that the economic length for the suspended truss
should be longer and that for the cantilever arm be shorter
than the values given above. If & be the average depth of
truss and % the length of the anchor rods, the value of ¢, when

a and / are given, is i(l + a +%).

ART. 39. DEFLECTIONS.

The deflection at any point of a cantilever truss may be com-
puted by the application of formula (1) of Art. 21, but this
involves lengthy numerical work. Treating the truss as a beam
of uniform cross-section, approximate expressions for deflection
may be derived which will be useful in comparing the stiffness
of the cantilever system with that of other structures. ° The
general formulas of Arts. 4 and 13 enable such expressions
to be deduced for the end of the cantilever arm. The deflec-
tion due to the live load is that required to be found. '

In Figs. 61 and 62 let the trusses be regarded as having the
constant moment of inertia 7 and coefficient of elasticity Z. Let
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7 be the end of the anchor span, 2 the pier, and 7 the end of the
cantilever arm. As before, a, ‘4, ¢, represent the lengths of
anchor span, cantilever arm, and suspended truss. Under any
given load the point 7 has a deflection 4, upward in Fig. 61

[N, -
a a

a
7

a 2 6 < Vi a . 9 é (4

Fig. 61. Fig. 62.
and downward in Fig. 62, the shaded areas in these figures
denoting the positions of the live load for which the deflection
at 7 is desired. As the truss is continuous from s to 37, the
theorem of three moments in (8) of Art. 4 dpplies directly, pro-
vided that 7 be regarded as a support which is elevated or
depressed the amount 4 above or below the level of 7 and 2.

Casg I.— Let the anchor span be covered with the live load
wa as in Fig. 61. In (10) of Art. 4, each subscript is lowered
by unity, and then /; and /, are replaced by @ and 4; also 4,
and /%, are made zero, and /%; is replaced by 4. The theorem
then becomes '

Mya + 2 Mya + b)+ M, =—}wa3+§§—u-

Now the load wa produces no moments at 7, 2, 7; hence the
first member of the equation vanishes, and
wadh
= wao I
24 EJ (M
is the upward deflection of the end of the cantilever arm.
CasE II. — Let the central span be covered with the live load

as in Fig. 62. In (10) of Art. 4, the same changes are to be
made as before, and it thus becomes

Mia + 2 My(a + b)+Mb=— } wb® + 6 El4

b
Here, as before, //; =0 and M, =0, but M, =— } wecb — } wh.
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Hence. d=

_wb’(4ab+4ac+4bc+3b’), )
" 24 ET

which is the downward deflection of the end of the cantilever

arm.

When the Niagara cantilever bridge was completed in 1883,
tests of deflection were made; it was found when the anchor
span was covered with a load of one gross ton per linear foot
per track that the upward rise of the end of the cantilever arm
was 1.3 inches, also when both anchor span and central span
were covered that the downward deflection of the end of the
cantilever arm was 5.4 inches. The value of 4 for Case I was
hence 1.3 inches, while for Case II it was 5.4 + 1.3 = 6.7 inches.
To test the formulas the values of 4 will be computed for this
bridge, the panel over the pier being not considered. Here
a =195 feet, 6= 175 feet, c = 120 feet, w = 2240 pounds per
linear foot, £ = 25000000 X 144 pounds per square foot. The
value of 7/ in the anchor span varies from 130 feet* to 1210
feet4, a mean value being 670 feet®. Substituting these in the
formulas, the deflections are found in feet, and reducing them
to inches there are found 4 = 0.6 inches for the first case and
4= — 5.8 inches for the second case, the first being about one-
half of the observed value, apd the second about one-eighth less.

While the above formulas give only rough values of the de-
flections for a trussed structure, they are valuable for purposes
of general discussion. For instance, it is seen in (2) that the
length & is the controlling element, and hence to increase stiff-
ness the cantilever arm should be made short.

Prob. 39. Show by the theorem of three moments that the
deflection at the middle of a simple beam, uniformly loaded,
is 5 wl/*/384 El. Also show by the same method that the
upward deflection at the middle of the anchor span, due to a
uniform load in the central span of the cantilever structure, is
wa?(B® + bc)/32 EL
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A=RT. 40. CoMPARISON WITH SiMPLE TRUSSES.:

When a distance L is to be spanned by three simple trusses,
the most economical arrangement, as far as the superstructure
is concerned, is to make the three spans equal in length. If
w be the total load per linear foot, the maximum moment at the
middle of each span will be }w/2, the area of each moment
curve will be §/x } w/?=J;w/? and the area of the three
moment curves will be } w/®= 1}z wl®= 000926 wl3. By
deriving similar expressions for the sum of the moment curves
for a three-span cantilever structure the relative economy of the
two systems may be roughly estimated. A general formula for
one-half this sum is given by (1) or (2) of Art. 38, and in using
this the term involving 7, will be omitted as its influence is
small, and the neglect partially balances the fact that the alter-
nating stresses in the anchor arm have not been considered.

Let the total length of the cantilever structure be L. Let
a=0.2L, and let 4 and ¢ be varied so as to keep the central
span at 0.6 L. Then for the three following cases s, the sum
of the moment areas, has the values as stated :

a=02L, b=o01L, c=04L, s=o0.0127wl8
a=02L, b=o0.15L, c¢=03L, s=o0.0135wLl3
a=02L, b=o0.2L, c=02L, s=oo0153wll

It is' seen that all these values of s are greater than the sum
0.0093 wL? for the three simple trusses. The smallest value
is for thé shortest cantilever arm, as already indicated by the
previous investigations.

A greater degree of economy can be obtained by making the
anchor arm longer; the longest value to which the formulas
of Art. 38 apply is 0.212 L. For this, the following compari-
sons are made:
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a=o0.212L, b= 0001 L, ¢=0.394L, s=0.0114wL?,
a=o0.212L, b=0153L, ¢=0.270L, s=0.0126wL3
a=0212L, b=0212L, ¢c=0.152L, s=0.0148 wL3

Here the first case shows a moment sum but little exceeding
that of the simple trusses, and the same law is again apparent
regarding the influence of the cantilever arm.

By making the anchor span still longer, the values of s may
be made smaller, but a detailed investigation will show that
the lowest possible value of s is 0.0093 w.3, and that this occurs
when a=1L, b=0,c=}L, that is, when the structure con-
sists of three simple trusses. The cantilever system hence has
no theoretic economy over simple trusses when the piers can
be located in any position; moreover, when the influence of
the alternating stresses in the anchor arm and the material
required for anchor rods are taken into account, it is at a
marked disadvantage. '

In regard to stiffness, the advantage is also on the side of
the simple truss. When the distance L is spanned by three
simple trusses of equal length, the maximum deflection of
each is

4 4
A=S52E _ SwL' _ 000161 wlt/EL
82 BT~ 3t104 B1 - 000101 w2/

To compare this with the deflection of the end of the cantilever
arm when the central span only is loaded, formula (2) of Art. 39
may be used, and the following results will be found :
a=02L, b=01L, c=04L, A=0.000246wl*/EI],
a=o0.2L, b=015L, ¢=0.3L, A=0.000569wlt/EI]
a=o02L, b=o02L, c¢=o02L[, A=o0.001000wl*/El
These show deflections greater than for the simple truss, the

first being 50 per cent higher, the second over four times as
great, and the third over six times as great. Moreover, the
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load on the central span causes an upward deflection of the
anchor span; this is less than the downward deflection of
the simple truss, the fractions for the three cases above being
0.000063, 0.000084, 0.000100, as computed from the formula
given at the end of the last article.

The above comparisons put the cantilever system in the most
unfavorable light, because it is supposed that the distance L
is divided into three equal spans for the simple trusses. How-
ever, if the abutments and piers be fixed by local conditions,
as will usually be the case, the cantilever system may have a
marked theoretic advantage. Thus, L being given, let it be
supposed that the piers are fixed so that @ is 0.2Z. There
will then be three simple trusses whose lengths are 0.2 L, 0.6 L,

0.2 L, and for these the moment sum is
s= w(ol.z LY + 'w(o;il,)a + w(ol.z Ly _ 0.0194 wl?

which is greater than the values found for the corresponding
cantilever spans, 70 per cent greater for the first case, 54 per
cent for the second, and 31 per cent for the third. The deflec-
tion of the middle span of the simple truss system here is
0.000169 wLl*/E/, which is very much smaller than those found
above for the end of the cantilever arm ; here the simple system
is preferable as far as stiffness and the absence of injurious
oscillations is concerned. :

For the second series of comparisons where « is 0.212 Z, if
the piers be fixed by local conditions, the three simple trusses
will have lengths of 0.212Z, 0.576 L, 0.212 L, and the moment
sum s will be found to be 0.0175 w3, which is also larger than
the values for the cantilever system. In fact, in all cases where
the piers and abutments are fixed in position, the cantilever
system will be found to have a theoretic advantage in economy
of chord material.
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The above investigation, like those of the two preceding
articles, has omitted so many elements that the numerical
results obtained are merely rough guides to assist the judgment
of the engineer. The cost of the piers and the erection of
the superstructure are important factors in the selection of
the system to be used, and the influence of these cannot be,
reduced to formulas.

Prob. g0. When a=}LZ, 6=}L, ¢ =0, compare the deflec-
tion of the end of the cantilever arm with that of the middle of

a simple truss having a length equal to the central span of the
cantilever structure.

ART. 41. GENERAM® COMPARISONS.

The cantilever system is not adapted to short spans where
the ratio of dead to live load is small on account of the pro-
vision that must be made for the alternating stresses in the
anchor spans, as well as on account of the high deflections that
occur under live load. For a highway structure where the
live load is light, it may, perhaps, be sometimes advantageously
used for spans of about 300 feet; if built as a through bridge,
and the upper chord be made to imitate the curve of a suspen-
sion cable, as in the beautiful bridge built by J. M. PorTER at
Easton, Pa., it is particularly suitable for city and suburban
structures. '

The cantilever system is best adapted for use in long spans
where the ratio of dead to live load is large, and especially
where the simple truss or the arched bridge is difficult to erect.
The longest simple trusses are those of 550 and 553 feet over
the Ohio river at Cincinnati and Louisville; in these the eco-
nomic limit of the system is probably nearly reached. For
longer spans it will be a question as to whether an arched, a
suspension, or a cantilever structure shall be used. For spans
between 400 and 550 feet the cantilever system can compete
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with the simple truss and with the arch. For spans between
500 and 1500 feet it can compete with the arch and with the
suspension bridge. For spans exceeding 1500 feet it cannot
probably be so economically built as the suspension structure.
It is true that the Forth bridge with its great spans of 1700 feet
is of the cantilever type, but it is thought by many engineers
that the selection of this was a mistake. In any given case
local ‘considerations regarding the piers and the difficulties of
erection are the elements that mainly control the selection of
the system to be used.

In the preceding pages the computation of stresses in canti-
lever trusses by locomotive wheel loads has not been discussed.
These are generally specified and must always be used for the
design of the stringers and floor beams, but for the usual cases
where the spans are long so that the dead load equals or
exceeds the live load, it is unnecessary to use them for the
trusses. Two or three panel excess loads at the head of the
train may be generally substituted for the locomotive wheel
loads to give the stresses with all needed precision. When
these are on the cantilever arm it is clear that they should be
placed as near the section as possible to give the maximum
shear, and at the end of the arm to give the maximum moment.
The use of locomotive wheel loads for computing stresses in
trusses of long span introduces a hair splitting refinement which
is unwarranted by the actual conditions of traffic, and it is noted
with satisfaction that the practice seems to be on the decline.

There is no mysterious principle in the cantilever system
whereby it is more advantageous than others. As noted in
Art. 29 it is merely an adaptation of the continuous system,
whereby the defects of the latter are avoided and its theoretic
advantages preserved. A continuous structure is theoretically
more economic than a series of simple trusses having the same
spans; the moments are more uniformly distributed, those over
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the piers being negative and those near the centers of the spans
being positive ; the cantilever system preserves this distribution
of moments. The continuous structure may often be erected
without false works by building it out panel by panel; the canti-
lever system has the same advantage. The cantilever structure
avoids in part the alternating stresses which occur in all spans
of the continuous bridge, and it avoids entirely the variations in
stresses that may arise by alterations in the levels of the
supports.

In conclusion it may be suggested that probably the common
three-span cantilever bridge, which has been mainly discussed
in this chapter, has a lower degree of economy than the arrange-
ment where the simple trusses are in the end spans, as in the
Kentucky river bridge. In this plan no anchorages are neces-
sary and since the intermediate truss is longer than an anchor
arm it is influenced less by alternating stresses. For four or
six spans this arrangement must necessarily be used at one end,
as in the Memphis bridge, and wherever local conditions per-
mit the end spans to be sufficiently long it should receive careful
attention as a plan whereby the cantilever structure can best
utilize the theoretic economy of the continuous system.
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CHAPTER 1IV.
SUSPENSION BRIDGES.
ART. 42. HisTORICAL NOTES.

Since very early times ropes have been stretched over rivers
in order to assist the ferriage of boats, or to carry small parcels
across in a suspended basket which was pulled to and fro by
a cord attached to it. The next step was for a man to walk
across upon the rope, keeping his balance by the help of two
other ropes hung somewhat higher so that he could grasp them
with his hands. Later two ropes were hung side by side and
a rude roadway laid upon them, thus forming a narrow foot
bridge. In the eighteenth century chains were used instead
of ropes and the structure made sufficiently heavy to allow
the passage of animals and vehicles. All suspension structures
erected prior to the beginning of the nineteenth century were
of this rude type; they were few in number, short in span, and
very deficient in rigidity.

The first true suspension bridge was erected by JAMEs FINLEY
in 1801 at Greensburg, Pa.; it was distinguished from all previ-
ous structures by having the
roadway nearly horizontal
and hung from the chains
by vertical rods, while the
chains themselves passed over
, towers and by means of back-
stays were anchored to the rock. Fig. 63 shows a side eleva-
tion of this bridge where BD are the stone towers built at the
sides of the stream, BCB the suspended chains, B4 the back-

Fig. 63.
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stays anchored at A4 in the rock under the approaches; EF
the surface of the approaches, and FF the roadway which
is hung from the two parallel cables by the vertical rods. The
span of this bridge between the towers was ;o feet, its width
12} feet, and its cost $6000; it was warranted, all but the
flooring, to last fifty years.

Eight suspension bridges of this type were erected by JAMEs
FINLEY and JouN TEMPLEMAN prior to 1810; one at Cumber-
land, Md., had 130 feet span; one near Washington, D.C., had
130 feet span; one at Wilmington, Del., had 145 feet span;
and one over the Schuylkill river above Philadelphia had two
spans of 148 feet each, with a tower 10 feet wide between them.
In 1808 FINLEY was grahted a patent for this system of bridge
construction, and the knowledge of it was widely spread by the
descriptions given by THomAs PoPE in his Treatise on Bridge
Architecture, published at New York in 1811.

In these bridges the cables were made of chains, but the fact
that iron wire had greater strength was soon recognized. In
fact a foot bridge with iron wire cables, having 408 feet span,
was erected in 1806 over the Schuylkill river, the platform being
probably laid on the cables in the old style. In 1814 TELFORD
made investigations and concluded that with wire cables it was
possible to build a suspension bridge a thousand feet long. In
1819 BROWN built one with 450 feet span, and in 1826 TELFORD
erected one over the Menai straits with spans of 580 feet; these,
however, were chain bridges, the chains in the Menai bridge
being made of bars 9 feet long, 3} inches wide, and 1 inch
thick, united at their ends by coupling belts. Throughout
Europe the suspension system gradually spread as an advan-
tageous one for highway structures of long span. In 1834 a
bridge of 870 feet span was erected at Freiburg, Switzerland,
the four cables of which were made of wire, 1056 wires being
used in each cable ‘
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In 1842 CHARLEs ELLET built a wire suspension bridge
across the Schuylkill river which had a span of 343 feet; in
1848 he built one across the Niagara river which was used
for highway traffic until the completion of the heavier structure
by RoOEBLING in 1855. In 1848 he also built one over the Ohio
river at Wheeling, which had the great span of 1010 feet; this
was blown down in 1854. All suspension structures built be-
tween 1810 and 1850 were of the Finley type, shown in Fig. 63,
the roadway being hung from the cables by vertical rods; to
prevent oscillations, however, inclined rods called stays were
attached to the roadway at various points and carried to the
tops of the towers, while guy rods were run laterally and down-
ward from the roadway and secured to points on the banks of
the stream. In spite of these precautions these bridges were
subject to violent oscillations in gales of wind and many were
destroyed. Even under the passage of ordinary traffic they
were liable to great deflections, and it was then generally sup-
posed that the system could not be advantageously adapted to
railroad structures.

The Niagara suspension bridge completed in 1855 by Jonn
A. RoEBLING marks an epoch in the history of this system, it
being the first and only suspension structure which has been

built for heavy railroad traffic.
/d'lk

e T --- The span between towers was
Fig. 6. and it had four cables, each

821 feet, the width 15 feet,
10} inches in diameter and made of 7 twisted strands of wire.
The upper deck was for railroad and the lower deck for high-
way traffic. The distinctive feature introduced was that the
roadways were supported by two trusses 16 feet deep, these
trusses being hung from the cables by rods. By the use of the
truss the stiffness of the structure was greatly increased, this
tending to cause a partial load to be uniformly distributed over
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the cables. This bridge was successfully used for 42 years;
in 1880 the wooden trusses were taken out and replaced by
steel ones; in 1886 the stone towers were also replaced by steel.
In 1897 the bridge was taken down, giving way to the steel
arch erected by L. L. Buck (Art. 87).

The East river bridge between Brooklyn and New York,
completed in 1883, has a central span of 1595 feet and two side
spans of 930 feet; it has eight cables each about 16 inches in
diameter, and carries a foot walk, two wagon roadways and
two tracks for light railroad passenger traffic. The second
~ East river bridge, begun in 1897, has a main span of 1600
feet, and will have two foot walks, two carriage ways, four
trolley tracks and two elevated railroad tracks. These are the
longest suspension structures in the world.

The suspension bridge is adapted to long spans where false
works cannot be used. In erecting it the cables are first erected
on the towers and anchorages, then the vertical hanger rods
attached to the cables, and the truss finally built out from the
towers panel by panel and secured to the hangers. The Niagara
bridge required three years for its erection, and the Brooklyn
bridge thirteen, a large proportion of the time in the latter
being spent on the towers and anchorages. With the modern
improvements in methods of erection this time can be very
much reduced, and it is estimated that the great bridge of 3200
feet span, proposed for the Hudson river at New York, can
be built in six or eight years. It is now clearly recognized, for
spans exceeding 1500 feet, that the suspension system affords
the greatest advantages, and that it may be used for the longest
spans and the heaviest traffic wigh'a greater degree of economy
than either the cantilever or the arch.

Prob. 41. Consult the article Bridges in the 1896 edition of
Jounson’s Cyclopaedia, and ascertain the size of the cables in
the Brooklyn bridge, the number of wires in each and the
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method by which the cables were made. See also Harper’s
Magazine, May, 1883; and Van Nostrand’s Science Series,
No. 32. ‘

ART. 43. STRESSES IN THE CABLE.

An unstiffened suspension bridge is one in which each load
is transferred directly to the cables through the hanger rod to
which it is hung. It is here proposed to find the stresses in a
cable of such a bridge when the entire roadway is uniformly
loaded. If there be no loads hung upon the cable it assumes
the curve called the elastic catenary; but usually the weight

of the roadway and live load is far greater than the weight of

the cable and hence it is allowable and customary to regard the
entire weight of both as uniformly distributed on a horizontal
plane. The letter  will represent this uniform load per linear
unit for one cable.

In Fig. 65 let BC ' represent one-half of a cable of a suspen-
sion bridge, C being the middle of the span. Let / be the span
and /% the sag of the cable below
the tops of the towers. The cable
BC is held in equilibrium by a
horizontal tension A acting at C,

Fig. 6s. a tension 7 tangent to the curve
at B, and the uniform load 3 w/ which is distributed over it.
Taking moments about B gives

iic
A T AT

Hik—}wl-}/=0 or H=%,. (1)

which is the horizontal tension at C. To find 7 it is noted that
this is the resultant of /7 and the load } w/, or

) 2
T=vVEfGwlf= Z’—f\/( + 16/112, (2)

which is the tension in the cable just before it reaches the top

N



ART. 43. - STRESSES IN THE CABLE. 117

of the tower. Itis seen that /7 and 7 increase as the sag %
decreases. :

The fraction /%// may be called the sag ratio, as it denotes
the ratio of the sag to the span, and it will be designated by s.
Using this letter formulas (1) and (2) may be written

H=2 T=ﬂl\/1+l6sz, (3)

8s 8s
in which w/ is the total uniform load on the entire cable. The
sag ratio s varies in practice from 1/7 to 1/15. FINLAY in
1810 recommended 1/7, but smaller values have generally been
used. In the Niagara bridge the upper cable had about 1/15
and the lower one about 1/11; in the Brooklyn bridge the
value of s is about 1/12.5. When s is small the stresses /7 and
7 become great, and hence, as far as the cables are concerned
s should be a large fraction; this, however, requires high towers
and the value of s to be selected in any case should be that
which renders the total expenditure a minimum.

The curve of the cable under a uniform load is a parabola.
To show this let /V in Fig. 65 be any point whose coordinates
with respect to C are x and y. Taking moments about &, and
substituting the value of A from (1), there results,

_wa? _ 4k |
y_zH’ J= 1212, (4)

which is the equation of the common parabola. It is also seen
geometrically that the curve is a parabola by noting that the
forces H, wx, and the inclined tension at V' meet at a point
distant 4 x from C.

The tension in the cable increases from C to B and its con-

stant horizontal component is A. At any pomt N, dlstant x

from C, the tensxon in the cable is

= VETF (wrf = H\/r+6 B, (s)
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and this becomes equal to 7 when =3}/ When the cables
are made of chains or eye bars it is possible to vary the sections
so that they are proportional to the stresses that come upon
them. This method of constructing cables is no longer em-
ployed, since greater economy can be attained by the use of
steel wire whose strength is far greater and more reliable than
any system of chains or links. With wire, however, the cross-
section of the cable must be uniform throughout, and hence it
must be proportioned to resist the stress 7" as given by (2).
Steel wire has been made having an ultimate tensile strength of
300 000 pounds per square inch, and a quality suitable for sus-
pension cables can be obtained in the market which has an ulti-
mate strength .of 225 000-pounds per square inch. When used
in the form of twisted ropes the ultimate strength per square
inch of actual metal may be as high as 180000 pounds per
square inch. '

When a cable is made of parallel wires let 4 be the diameter
of a wire and AV their number, then the diameter of the cable
will be approximately V1.3 /V, or the gross area of the finished
cable will be approximately 30 per cent greater than the net area
of metal. When the cable is made of twisted ropes the gross
area exceeds the net area in a much higher proportion.

The backstay B4 in Fig. 63 should have the same inclination
to the tower as the cable does, otherwise there will be a hori-
zontal component which will tend to overturn the tower; the
stress in the backstay is then the same as the maximum stress
in the cable. Sometimes the roadway extends beyond the
tower over the distance FE and is hung to the backstay which
then takes a curve like the cable; this is the case in the
Brooklyn bridge which has two side spans of 930 feet each.
Usually the backstays and central cable form one continuous
cable extending from anchorage to anchorage and resting at
the tops of the towers upon movable saddles.
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While the above formulas strictly apply only to a suspension
bridge which has no truss, they are commonly used for all cases
of full uniform load. As an example let it be required to find
the size of a cable for a highway bridge of 520 feet span where
the dead and live load per linear foot is to be 1600 pounds and
where two cables are to be used having a sag of 45 feet. The
load per linear foot for one cable is w =800 pounds, and by
(1) the value of /A is 600 Qoo pounds; then from (2),

T =600 900 X 1.058 = 635 800 pounds
which is the maximum stress in the cable. Taking the working
stress for the steel wire as 40000 pounds per square inch the
net section needed is 15.9 square inches. If the cable is made of
parallel wires the gross section will be about 20.7 square inches
which corresponds to a diameter a trifle larger than 5} inches.
The weight of this cable will be 54 pounds per linear foot.

The stresses in a cable due to its own weight may be com-
puted from the above formulas with sufficient precision if the
sag ratio s is less than }. For the above example taking
w = 54 pounds, /7 and 7 are found to be 40600 and 42 goo
pounds, and thus the greatest unit-stress in the cable, due to its
own weight, is 2700 pounds per square inch. The unit-stress
due to the weight of the cable is evidently independent of its
cross-section; thus if the cable be taken one square inch in
section, w = 3.4 pounds per linear foot, and 7= 2700 pounds
which is here also the stress per square inch.

Prob. 42. Compute the stresses in a cable due to its own
weight when the span is 1000 feet and the sag ratio ¢5.

Prob. 43. A light foot bridge used in the erection of the
Brooklyn bridge had a span of 1595 feet, and the maximum
uniform load upon it was 124000 pounds. There were two
cables, each having an ultimate strength of 636 coo pounds, the
sag being 73} feet. Compute the tensions /7 and 7, and the
factor of safety of the cables.
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ART. 44. DEFLECTION OF THE CABLE.

When the cable is being manufactured it is under stress only
from its own weight. After it is completed and the uniform
load is hung upon it, this load produces stresses and elongations
in the cable that cause it to deflect. During manufacture, there-
fore, it is to be hung higher than its final position; in order to
find the first position the deflection of the middle of the cable
due to the uniform load on the roadway is to be computed.
Let a suspension cable of the span / have the sag #Z when under
its full uniform load, let w2, be the weight of the cable per
horizontal linear unit, 2, that on the roadway, and w = w, + w,
the total load per linear unit per cable. It is required to find
the upward rise of the middle of the cable if the load w, be
entirely removed.

Let ¢ be the length of the cable when it hangs in its final
position with the sag /; referring to Fig. 65 this length is

3
c= 2£ (1 + %:)ia’x,

and from the equation of the curve given by (1) of the last article,

dy _wxr_ 8hx,
v~ H 2’
inserting this, expanding the binominal, and integrating, there
results
c=l<1+§é_a__3ﬁ€ >,
32 5
or, c=l<1+§s2——%34+...), . (1)

in which s is the sag ratio. By this formula the length of the
cable between the tops of the towers can be computed.

Suppose that all load be removed from the cable except its
own weight, then the cable length ¢ shortens to ¢; and the sag /
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decreases to %;. Let 8¢ denote the change in length ¢ —¢;, let
A be the net area of the cable cross-section and £ the coefficient
of elasticity of the wire. Let 7, be the stress at the point V in
Fig. 65 which is constant over the length d¢. The elongation of
this element is ‘

L. ‘
rN=UE
and the sum of all the values of A is the total change in length
&, or "
’ _ 7, dc
& = 2‘1: S

Inserting the value of 4r as giveﬁ by the first and second equa-
tions of this article and the value of 7 as given by (5) of Art.
43, and integrating, there results '

_Hl :

6 2

=7 E(I +— 3 ) @)
which is the total elongation of the cable; and if Z be taken
as due to the total uniform load on the floor the change in length
of cable caused by this load can be computed. Then

6 =c—28&, (3)
is the length of the cable when stressed only by its own weight.

Now when the cable shortens to ¢, the sag decreases to %,
and %,=s,/ where s, is the new sag ratio. The relation between
¢; and s, is the same as that between ¢ and s in.(1), and hence

4 __ 5 5.2 5(a— 1) — =

31 12 ]_ + 32< / O) /‘1 511’ . (4)

are equations from which s; and /zi are determined. Finally
Sh=1rh — Iy, (5)

is the deflection of the cable due to the total uniform load on
the roadway.

To illustrate the method, take the numerical example of the
last article where / = 520 feet, and /% = 45 feet under full load;
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also 4 = 15.9 square inches and E = 30000000 pounds per
square inch for steel wire. Here s =45/520 = 0.086538, 5% =
0.007491, s* =0.000056 and from (1) the cable length ¢ is
530.201 feet. As /=600 900 — 40600 = 560 300 pounds, (2)
gives & =0.634, and accordingly from (3) the length ¢ is
529.567 feet. Next from (4) the value of s; is found to be
0.083774, whence /; = 43.56 feet, which gives the sag that the
cable must have during manufacture. Finally, the deflection of
the cable from that position under full load is 1.44 feet. |

Prob. 44. A suspension bridge has a span of 1000 feet and
a sag of 80 feet when fully loaded. The unit-stress /7/A due
to uniform load on the roadway is 39000 pounds per square
inch. Compute the cable lengths ¢ and ¢, the sag 4, and the
deflection 84.

ART. 45. APPROXIMATE METHODS.

In the two preceding articles an approximation has beén intro-
duced by considering that the weight of the cable is uniform
per horizontal linear unit. Further approximations may, how-
ever, be safely made, particularly when the sag ratio s is less
than 1/12. One of these is based upon the principle that
whenever @ is a small fraction (1 + @) is practically equal to
1+ 2a,and (1 +a)* is equal to 1 + 3 a; or if 2 and & be small
fractions (1+4a) (1 +6) is"equal to 14+a+ 4 Or again,
1/(i+a)=1—a.

For instance, in formula (3) of Art. 43 the sag ratio s is
small and s2 is still smaller; thus V1 + 1652 is nearly 1 + 852
and the value of 7 may be expressed as /(1 + 8s2%). If /=520
feet and /% = 45 feet as in the numerical example of Art. 43 the
value of s? is 0.007491 and 1 + 8 52 = 1.060, while the true value
of Vi+16s% is 1.058. Thus the approximate method gives
values a little too large when used for simplifying roots, and
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values a little too small when used for simplifying powers and
products.

To apply this method to determining an approximate formula
for the length of the cable the first and second equations of the

last article give .
_ ¥ 64 /80 , (M 72
c.-zj; (1+ 7 dx—zjo (1+327’:-z>dt,

and performing the integrations there is found

c= l(l +—§-%> = l(l +§:2)v (1)

which is the same result as would be obtained by dropping s*
from the expression previously found.

Formula (2) really needs no modification, but it is sometimes
more convenient to express & in terms of 7 instead of A.
Taking 7 = A (1 + 8s%) and eliminating /A, that formula, by
use of the above principles regarding small fractions, reduces to

24
O L (2)

which gives the cable elongation due to any uniform load that
produces the stress 7" at the steepest inclination of the cable.

Let 8% be the change in % due to the change of & in ¢; then
the sag %, when the cable has the length ¢, is

hy=h—&h. (3)

An approximate formula for 8% may be found by regarding &¢
and 8 as differential lengths; thus if ¢ in (1) receives the
change &, the sag /% receives the change &% and hence by

differentiating (1), and solving,
_ 3l 53% :
=6 =165’ @

from which the deflection 8% may be directly computed.
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The data of the last article will now be used in these approxi-
mate formulas. - First the cable length ¢ is found to be 530.387
feet instead of 530.201. As 7 =653 800 — 43 700 = 610 100
pounds from Art. 43, the above formula (2) gives & = 0.652
feet instead of 0.634, so that ¢; is 529.753 feet instead of
529.567. Then by (4) the deflection &% is found to be 1.41
feet instead of 1.44, and finally the sag /4, is 43.59 feet instead
of 43.56. It will be noticed, while the cable lengths computed
by the two methods differ somewhat, that the changes in
length and the deflections practically agree. Considering the
uncertainty in E it may be concluded that the formulas of this
article are sufficiently precise for all preliminary numerical com-
putations, and indeed for nearly all practical cases.

Prob. 45. A suspension bridge has a span of 1000 feet and
a sag of 100 feet when fully loaded. The total uniform load,
exclusive of weight of cable, is 1 200 000 pounds per cable, and
the net cross-section of the cable is 40 square inches. What is
the sag of the cable before the load of 1 200000 pounds is
applied ?

ART. '46. EFFECT OF TEMPERATURE.

When' the temperature rises the cable elongates and its sag
increases; when the temperature falls the cable contracts and
its sag decreases. The formulas and computations of the pre-
ceding articles may then be regarded as for a standard tempera-
ture which will be taken at 50 degrees Fahrenheit. The inquiry
will now be made as to the effect produced in the cable by a
rise of # degrees in temperature.

Let ¢ be the length of the cable at the standard temperature,
% its sag, and s its sag ratio. Let & be the elongation of the
cable under a rise of ¢ degrees; if e be the coefficient of expan-
sion, or the elongation of a unit-length under a change of one

degree, then
8 = ete, (1)
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and from (4) of the last article the deflection is

_ 3 e
B = 16 s ()

If the temperature rises, ¢ is taken positive, and 8% being posi-
tive denotes a downward deflection; if the temperature falls
¢ is taken negative and 8% is then an upward deflection.

When the cable falls the stress in it decreases and when it
rises the stress increases. Approximate expressions for the
change in stress may be obtained by differentiating (1) and (2)
of Art. 43 with respect to 4, and letting &4, 6/ and 87T be
finite differences. Thus,

2 LY
SH =— 2251, =—H,

“ 8/’ V] ()
which gives the change in horizontal tension due to a rise of ¢

degrees; also
8T=—(1—16s“)T87h, (4)

which gives the change in the tension at the towers for a rise
of ¢ degrees.

It is seen from (3) that the relative change in horizontal
stress is the same as the relative change in deflection; thus, if
% changes two per cent /A also changes two per cent. From
(4) it is seen that the change in 7 is also proportional to the
change in deflection. When the temperature rises the minus
sign shows that /& and 7 are decreased; when it falls they are
increased.

For example, let a cable 1000 feet in span have a sag of
100 feet, or s = i} at the standard temperature of 50 degrees.
Then from (1) of the last article the length of the cable is
¢ = 1026.67 feet. Let the coefficient of expansion of the steel
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" wire be 0.0000072. It is required to find the changes in deflec-
tion and stress when the temperature rises to 110 degrees.
Here ¢ = 60 degrees and & is found to be 0.444 feet, which
is the elongation of the cable. Then from (2) the deflec-
tion 8% is 0.83 feet, and from (3) and (4) it is found that
8H = — 0.0083 H and 87 = — 0.0070 7. The stresses in the
cable are thus decreased about three-quarters of one per cent
when the temperature rises 60 degrees above the standard.
When the temperature falls to 10 degrees below zero, z = — 60
and 8 = — 0.83 feet, from which 8/ =0.0083 4 and 87T =
0.0070 7, or the cable stresses are increased about three-
quarters of one per cent when the temperature falls 60 degrees.
The total change in sag for the change of temperature from
100° to — 10° is 1.66 feet, and the total range in stress about
1.5 per cent of its mean value.

It is seen from the above equations that the changes in sag
and stress due to temperature are greater for a small sag ratio
than for a large one. Thus for the above data let Z = 80 feet
or s =1/12}; then ¢ =1017.07 feet, & = 0.439 feet, 8% = 1.03
feet, 84 =o0.0129 H, 87 =0.0116 7, so that here the total
change in sag is 2.06 feet and the total range in stress is about
2.5 per cent of its value at the mean temperature. The effect
of temperature upon the stresses in the cable is therefore
always quite small.

Prob. 46. For the data of the last problem compute the
greatest stress per square inch in the cable. Compute also
the stress per square inch when the temperature falls so that
the sag is decreased to g9 feet.

ART. 47. EFFEcCT OF A SINGLE Loab.

Let a single load 2 be upon the bridge at a distance } £/ from
the middle, where £ is any fraction less than unity. Let the
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* load be very light compared with the cable, so that the latter
still remains a parabola with
its vertex at the middle. It

. . M

is required to find the stresses Y
and deflections due to the *
load P.

As before, let / be the span BB, 4 the sag DC, and s the sag
ratio £//. The vertical reaction at the left end is 4 P(1 —#)
and that at the right end is 4 (1 + £), and there is also at each
end the horizontal reaction A. To find A take a section at C,
and since no moment can exist in a cable, the sum of the
moments of the forces on either side of € must vanish; thus

H=P(1—k)//41 (1)
is the horizontal tension due to the light load P. Let ¢ be the

angle which the curve at any point #/ makes with the horizontal
and 7, the tension at that point; then

T,=Hsec¢p=H(1 +tan3¢)*=H(I +i~£3)*-

But as the curve is a parabola its equation is

ha? dy 8hx
=4T’ and zy-_-.T (2)

and hence 7, is known. For the stress 7 at B make x=4/;
thus 7 _ H(1+6402/08,  T=H(1+162  (3)
and the tension at every point of the curve, dueto 2, is deter-
mined by inserting in these the value of A from (1).

The elongation of the cable due to P is given by (2) of Art.
44, using for A the value found above, and the deflection at the
middle may be written from (4) of Art. 45, or
_Pl(3+165Y)(1— k)
- 64 s2AE i

in which 4 is the area of the cable cross-section.

YA 4)
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Let /' be the sag of any point // below the line BB and let
8/ be the deflection of A7 due to the load P. Since /' =k —y,
it follows from equation (2) above that

' = (l - 4%) %, ()

by which the deflection of any point of the curve may be ob-
tained. This formula (5) holds for uniform load also if the
value of 8% be substituted for that case.

To find the deflection under the load P, let x =4 4/, and the
last equation becomes 84’ =(1 — #%)8%, and then by (4)
_PI3+16sH)(1 — &)1 — 4% ©)

64 s2AE
Here if £2=1 there is no deflection, and if 2= o0 the load is at
the middle and the maximum deflection obtains. In all these
formulas P must be sufficiently light so that the deflected cable
still remains a parabola. They are principally useful to show
the influence of a single panel load as compared with that of the
entire uniform load.

Y4

Prob. 47. Show that formula (1) will reduce to the formula
for uniform load by substituting wd(4 £/) for P and then inte-
grating between the proper limits.

ART. 48. HANGERS AND STAYVS.

The vertical rods l;y which the roadway is hung to the cables
are called hangers or suspenders. If the roadway is horizontal
the lengths of these hangers are readily computed from the
equation of the parabola. Usually the roadway is given an
upward camber in order to increase the stiffness of the struc-
ture, and the camber curve being assumed, the ordinates
between this and the parabola give the hanger lengths. The
hangers are provided with sleeve nuts at their lower ends or



ART. 48. HANGERS AND STAYS. 129

have there .other means by which they may be adjusted in
length so as to make the tension upon them equal under the
uniform load. At the upper end the hanger is usually pro-
vided with an eye loop through which a bolt passes to con-
nect it to the lower part of a band that encircles a cable.
The hangers are of equal size throughout and proportioned
for a tension equal to the maximum floor load that comes
upon them.

When stays are used they extend out from the top of each
tower to about the quarter points of the roadway, as seen in

Fig. 67. These stays relieve ‘
the cable of but little stress, '
their main office being to ’

prevent oscillations in the Fig. 67. "

roadway or truss under wind or unsymmetrical loads. The
point of attachment at the foot is near the end of the hanger,
and each stay is provided there with the means of regulating
its length so that it may have the proper tension. In design-
ing the Brooklyn bridge the proportion of load which the stays
were to carry was assumed, the remainder being assigned to
the cable, and it was asserted that by the proper adjustment
of lengths the stresses in cable and stays would correspond to
the calculated ones. Thus for a distance of 133 feet out from
the towers the stays were required to carry 1032 pounds per
linear foot and the cable 180, for the next 133 feet the stays
were to carry 450 and the cable 760, and for the following
133 feet the stays had 188 and the cable 1024, while for 400
feet on each side of the middle of the span there were no
stays and the cable carried the entire load of 1212 pounds
per linear foot. The computations showed that while the
stays supported 22 per cent of the load the tension in the
cable was only 12 per cent less than if no stays had been
used. The following investigation indicates, however, that it
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is impossible that the stays can carry so great a proportion
of the load as assumed above.

If P be the load to be carried by a hanger which is con-
nected with no stay, the stress in the hanger is 2. When a
stay is connected with the foot of the hanger, let fP be the
part of the load carried by the hanger and (1—f) P the part
carried by the stay, where f is a fraction less than unity.
Let /, and /, be the lengths of hanger and stay,
and 4, and A, the areas of their cross-sections.
Let 0 be the angle between the hanger and stay.
The deflection of P may be found in two ways,
first by regarding it as due to the elongation of

Fig. 68. the cable and hanger, and secondly taking it as
due to the elongation of the stay. As the stress in the
hanger is fP, the deflection of the cable is found by writing
JP instead of P in (6) of the last article, and then

4 PG + 1651 — &)1 —k2)+ﬂ ‘ (1)
64 s?AE AE
is the deflection found by the first method. Asthe stress in the
stay is (1 —f) Psecé, the vertical deflection due to its elongation is
(1 — f)Plysec?6
4P (2)
By equating these two expressions for J the value of / may be
obtained for a load at any position when 4, A4,, 4,, are given.

P

4 =

For example let /= 1600 feet, 2 = 128 feet, s =0.08. Let
a point be taken 200 feet from the tower or 600 feet: from
the middle of the bridge, so that 2= 0.75; also /; = 72 feet,
l, = 236 feet, secf = 1.888. Substituting these data in the
above expressions, equating them and solving for f, there is
found

= 4, 4,
I+ 1575370+ 085538

S
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Now let the cable cross-section 4 be 134 square inches, sup-
pose that it be required that the stay should carry one-half the
load at its foot or f = 0.5, also that 4, and A4, are to be equal.
Then the equation gives 4,=A,=79 square inches which is
impracticable and uneconomical. Again let 4 = 134 square
inches, and 4; = 4, = 4 square inches, then the equation gives
J/ =0.883, or the stay carries less than one-eighth of the load.
If a stay extends out to the quarter point of the span or £=o0.5,
a similar investigation will show that it carries less than one
per cent of the load at its foot. The true function of stays,
then, is not to relieve the cable of stress which they can do but
to a very limited extent.

If the point of attachment of hanger and stay be made to
~ deflect by loads at other points, as for instance by the approach
of the live load, this causes no stress in the hanger if the bridge
be without a stiffening truss, while the stay receives a stress
due to its elongation. Let 4’ be the deflection thus caused,
then the elongation of the stay is 4’ cos @; if S be the stress in
the stay the elongation due to this stress is S/,/4,E. Con-
sequently the stress in the stay is A,E4' cos 6.//,, and the
unit-stress is £4' cos 6.//,. Accordingly the unit-stresses thus
produced are independent of the cross-section of the stay. It
thus appears impossible to rationally design a stay to resist
the stresses that come upon it.

Stays moreover do not act in unison with the hangers and
cables under changes in temperature, while as stiffeners their
utility is far inferior to that of a stiffening truss. For all these
reasons stays have been practically abandoned in recent designs
for suspension bridges, and it is not likely that they will be
hereafter used in structures where a truss is used.

Prob. 48. Let /= 1000 feet, Z = 80 feet, £ =0.5. Find the
approximate lengths of the hanger and stay. '
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ART. 49. CABLE CONNECTIONS.

Thus far the cables have been supposed to hang in a vertical
plane. Usually, however, the cables on each side are drawn
inwards so that their distance apart at the middle of the bridge
is less than that at the towers,.and this is called “cradling the
cables.” In this operation the cable sag is slightly decreased,
and the. general effect is to stiffen the structure against lateral
oscillations. If & be the amount of this lateral cradling for one
cable and / the sag when in a vertical plane, the decrease in
sag 1s Sh=h—NIE—F=8/2 4,
since 4 is small compared with % (Art. 44). Thus if 4z =80 feet
and & = 2 feet, the decrease in sag is 0.025 feet, and by Art. 43
it is seen that the effect of this is to increase the cable stresses
by only three hundredths of one per cent.

At the tops of the towers the cables usually rest on movable
saddles in the manner indicated in Fig. 69. The stresses in
the cable due to loads in
the main spah can thus
be transmitted to the

Fig. 6. anchorage as soon as a
slight motion of the saddle occurs on its rollers. Before this
motion can take place the friction of the rollers on its bed plate
must be overcome and thus there will usually be lesser stress in
the cable on the land side of the tower when the main span is
alone covered with the live load. The difference of the horizon-
tal components of these stresses acts upon the top of the tower
and tends to pull it over toward the river side. The coefficient
of friction for rollers may be taken rougﬁly at o.or and thus
the total friction to be overcome before the saddle can move is
o.01 W where I is the total load on the saddle. Thus o.or W
is the horizontal force acting at the top of the tower which
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must be carefully taken into account in its design; if the tower
be:a framed structure the stresses due to this may be computed
by the method of Part I, Art. 74. For instance, if /= 520 feet,
/=45 feet, w = 1600 pounds per linear foot of cable, as in
Art. 43, then w/= 832000 pounds and / = 600900 pounds.
If there be no land span the weight ¥ is closely 416 000 pounds
and the horizontal force required to move the saddle is about
4200 pounds, so that /7 for the backstay is 596 700 pounds and
this is the horizontal tension transmitted to the anchorage.

Another method proposed is to connect the cable directly to
the tower on the river side by terminating the ropes in special
sockets; on the land side of the tower the backstay is to be
connected to the tower in a similar manner. See MORISON's
paper in Transactions of American Society of Civil Engineers,.
December, 18g6. '

'On entering the anchorage the cable wires or ropes are
carried around pins at 4 or are terminated in sockets. These
pins or sockets are connected by a series of eye
bars with the anchor plate G which is imbedded
in the masonry, the eye bars gradually varying
their inclination until they become vertical. At 4
the points of change in direction pins connect Fig. 7o.
the eye bars and special blocks of iron and stone are arranged
to receive the stress due to the change in angle. After the
completion of the metal work within the anchorage the whole
is closely surrounded with masonry, concrete, and grout, so
that it may be protected from corrosion and the greatest degree
of stability be secured.

7

The stresses in the anchor bars evidently decrease as they
become more inclined to the vertical, so that the upward pull on
the anchor plate is much less than the stress in the cable. An
exact determination of the upward pull is difficult when the
bars are imbedded in the mertar, but the rule given by the fol-
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lowing investigation is frequently used, it being supposed that
the variation in stress is similar to that which occurs in a belt
passing around a portion of a pulley.

Let 7, be the stress on one side of a belt which is in contact
with a pulley over the angle ¢, let 7, be the stress on the other
side, and 7 the stress at any intermediate
point. In consequence of the friction be-
tween belt and pulley 7 is greater than 7.
Let d$ be an elementary arc at any point
between A and G, then the two stresses in
the belt are 7 and 7 —d47, or the difference of the stresses
is d7. 1If dN be the normal pressure in the direction of the
radius and f the coefficient of friction for rest, the law of
friction gives d7°=fdN. But dN = Td¢, and hence

dT=fTd$, or log. T =jf¢p + constant.

As T, is less than 7 the angle ¢ must be estimated from the
point of contact 4. Thus when ¢ =o0, the constant is log, 7}
and accordingly for any angle of contact,

log, 7, = — f$ + log, 7. (1)

Here the logarithms are in the Naperian system and ¢ is in

terms of the radius unity. If the logarithms be in the common
system and ¢ be in degrees (1) reduces to

log 7, =—0.00758 f¢° + log T}, (2)

from which 7, can be computed when the quantities in the
right hand member are given.

Fig. 71.

It is very uncertain what value for f should be taken for
anchor bars imbedded in mortar, but probably 0.8 or 1.0 is not
too large. Let a cable enter the anchorage horizontally having
a stress of 1000000 pounds or 1 000 kips. With f=0.8 the
following values of 7, are then computed from(2) for various
values of ¢:
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¢= o0 30°, 60°, ' 9o°,

7,=1000, 643, 433, 285 kips,
and thus the stress at the anchor plate where the bars become .
vertical is only 28.5 per cent of the stress 7.

Prob. 49. Give all the reductions by which formula (2) is
derived from formula (1).

ART. §0. STIFFENING TRUSSES.

In Art. 42 it was mentioned that the lack of rigidity in the
early suspension bridges led to the destruction of several of
them by wind, and it was shown how the use of a truss to
increase the stiffness enabled the system to become practically
successful. As its name implies the stiffening truss is not
intended to carry loads to the towers but merely to distribute
the load uniformly over the cable, and thus prevent the oscilla-
tions caused by.an unsymmetrical weight or by the wind. A
truss is an indispensable adjunct for a modern suspension
bridge, and by its help the system can be advantageously
applied to the longest spans.

The most common kind of stiffening truss, diagrammatically
shown in Fig. 72, is one ex-
tending from tower to tower Yy~ 1]
without breaks in the chords. It
When there are no land spans
the truss is needed only between the towers; when land spans
exist other trusses are placed over these, and are hung to the
cable or supported at their ends only. In these trusses the web-
bing may be of any convenient kind and the chords are propor-
tioned to take both tension and compression. The hangers are
shown connected to the lower chords of the trusses, but if there
be two cables on a side hangers may be run from one of them
to the upper chord also.

Fig. 73.
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Another kind of stiffening truss has its upper chord cut at
the middle of the span as seen in Fig. 73, the object in do-
ing this being to reduce the
stresses caused by the live

It *ig. 78 load and by changes in tem-

) perature, although this is not

attained to so great an extent as generally supposed. The

trusses of the Brooklyn bridge differ from Fig. 73 in having the

chords apparently continuous, but there are sliding joints in

both upper and lower chords at the middle of the span, and the

movement of these joints due to the range between winter and
summer temperature is about four inches.

Other features may also be used in stiffening trusses. They
may be made continuous from anchorage to anchorage, or the
chords may be cut in the land spans on the plan of the cantilever
system. The action of the suspended truss, however, is entirely
different from that of a common truss which transfers loads to
its points of support. As already mentioned its office is to dis-
tribute loads to the cable, and hence under its own dead load
it receives no stresses. Even under the action of a live load
over the entire span it receives no stresses according to the
generally accepted theory. Under the action of a partial live
load it is to distribute this load over the cable and in so doing
stresses occur in all its members. In the following articles the
analysis of these trusses will be given.

Prob. 50. Ascertain the kind of trusses proposed to be used
in the great span of 3200 feet across the Hudson river at
New York; see Railroad Gazette, Sept. 14, 1894, Engineering
News, Sept. 13, 1894, and Transactions American Society of
Civil Engineers, Dec., 1896. For the new East river bridge
see Railroad Gazette, July 31, 1896; for the proposed third
East river bridge see Engineering Record, Jan. 22, 1898.
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ARrT. 51. THE TRUss witHOUT HINGES.

The common theory of the suspension truss having unbroken
chords over the main span will now be presented. This truss
is fastened at the ends to the towers so that either positive
or negative reactions may prevail under a partial load. The
lengths of the hangers are so adjusted that the dead load is
entirely carried to the cable. Under dead load, then, there are
no reactions at the end and no stresses in the truss at the
standard temperature for which the hangers are adjusted.

When a live load advances upon the bridge the office of the
truss is to distribute this load to the cable. If the cable be
sufficiently heavy so that it still remains a parabola with its
vertex at the middle of the span it follows that the stresses
in the hangers are all equal, for the parabola is the curve of
equilibrium only under uniform tension in the hangers. Fur-
ther, if the truss fully distributes the partial live load to the
cable, as it is intended it should do, none of it is transferred
to the towers, and hence if reactions exist at the ends of the
truss the sum of these must be zero.

In Fig. 74 let 7 and 2 be the supports at the towers and let
a live load of @ per linear unit extend out from the left support
the distance 2, where z is any
fraction less than unity. Let E]mﬁ_l_u_u_u_n_k
/ be the span and »' the &z ] 2
uniform upward pull of the
hangers per linear foot, so
that the total upward pull of ;i
the cable on the truss is w'/.
Let R; and R, be the re-

- actions of the supports due
to the partial load. The fundamental assumptions give

[Ix H .
D11 e

>

Fig. 74.

wl=wszl, or w'=wz, R;+R,=o0. (1)
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The reactions are found by taking moments about either end,
thus
— Ry —w'l-}l+wsl-}sl=o0,

and replacing for #/ its value wz there results

Ri=4wls(1—2), Ry=—4wlz(1—-23), (2)
and from these the shears and moments at all reactions are
found. When z=0, or z=1, the reactions are zero; when
z=14 the reactions have their greatest values § /. Hence the
maximum shears at the ends obtain when one-half the span
is covered with the live load.

The shear at any section in the loaded segment, distant 2/
from the end, is

V=R, +wWxl—wrl=}wl(z -2+ 22x — 21), (3)

which becomes zero when =12z and — R, when x=z; thus
the negative shear at the head of the load equals the reaction.
In the same manner it is seen that the shear becomes zero at
the middle of the unloaded segment, and that the diagram of
shears is as shown in Fig. 74. The maximum shears occur
at the ends and at the head of the load, and the maximum
maximorum shears obtain when one-half the truss is loaded,
their value being } w/.

The moment at any section in the loaded segment distant 2/
from the left end has the value

M=Rzl+wxl }zl—wzl-} xl=} wi(zx— P +223—23). (4)

This becomes 0 when =0 or when x =z, and it has its maxi-
mum value when x =142, this being the point for which the
shear is zero; thus the distribution of moments is that shown
in Fig. 74. When x =142 max M=} w/?(s*— 2% and as the
load advances this attains its maximum maximorum value for
z=4. The greatest positive moment is then ¢4 w/? and this
occurs when the live load covers two-thirds of the span. In
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the same manner by writing the equation for the unloaded
segment it is found that the maximum moment is at its middle,
and that the greatest negative moment is — gy w/? this occur-
ring when the live load covers one-third of the span.

In a simple truss the maximum shear is 4w/ and the maxi-
mum moment }w/2 while for the suspension truss the above
investigation gives § 2/ and g; w/2. Thus the maximum shear
for the suspension truss is only one-fourth and the maximum
moment only about one-seventh of that for the simple truss.
For the simple truss the maximum shears are at the ends; for
the suspension truss they occur at the ends and at the middle.
For the simple truss the maximum moments are at the middle,
for the suspension truss they occur at points distant one-sixth
of the span from the middle. Further the simple truss. must be
proportioned for both dead and live load, while the suspension
truss is stressed only by the live load. The suspension truss is
hence very light as compared with a simple truss of the same
span; the usual practice is to make the webbing uniform in size
throughout, designing it for the shear }w/, and also to make
the chords of uniform section throughout, desigming them for
the moment ¢4 w/? and arranging both chords to take either
tension or compression. .

Such is the common theory of the suspension truss as first
presented by RANKINE. For a very heavy cable and a light
live load it is not far from correct; for a light cable and a
heavy live load the fundamental assumptions do not hold and
the distribution of shears and moments is undoubtedly very
different from those given by the above analysis. In Art. 53
further remarks regarding the theory of suspension trusses will
be given.

Prob. 51. A suspension bridge of 800 feet span is subject to

a live load of 2000 pounds per linear foot, and it has two trusses
16 feet deep and with unbroken chords. If the unit-stress for
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designing the chords be 10000 pounds per square inch show
that the above theory gives 74.1 square inches for the cross-
section of the chords.

'ART. 52. THE Truss witH CENTER HINGE.

The second kind of stiffening truss where one or both of the
chords is broken at the middle is called a truss with center
hinge, although there is really no hinge but usually a sliding
joint. This truss is fastened at the ends to the towers so that
either positive or.negative reactions may exist under a partial
live load, and the lengths of the hangers are adjusted so that
the dead load is entirely carried to the cable. The stresses in
the truss are hence caused by live load only.

The fundamental assumptions are the same as before with
one exception. The cable is supposed to remain a parabola
with its vertex at the middle of the span under a partial load
and if this be the case the hangers are equally stressed.” It
cannot, however, be assumed that the partial live load is entirely
_distributed to the cable, since the introduction of the center
hinge furnishes a condition that there can be no moment at
the middle of the truss, and this condition will determine the
uniform upward pull of the hangers on the truss.

Let a partial live load extend out from the tower the distance
z/ where z is any fraction less than 1. Let w be this live load
per linear unit and ' the

f ittt f\/t ttttt f\ uniform upward pull. of the

! 7& hangers. The reactions be-
b ! ing R, and R, the sum of
i T == these is equal to wz/ — w'/
A | ] T o e
d L all the vertical forces about
either end is zero, and the
sum of the moments of the
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forces on one-half the span about the hinge is also zero.
These three conditions determine the three quantities R,, R,,
w', namely,

Ri=3wl(2:—322), Ry=—-3wlk? w=2ws’ (1)
The position of the load that gives the greatest value of R, is
found by putting dR,/dz =o0; this gives s=} and max R,
= 3w/ The greatest value of R, occurs when s=1 and
max Ry =—}w/. The distribution of shears is as shown in
Fig. 75, the shear at'the head of the load being R, + w'z/ — wa/
or 4 wl(42% — 3 2%) which has its maximum } 2/ when z=14.

The maximum moments occur at the points of zero shear.
For the loaded segment the shear and moment at a distance x/
from the end are

V=R, —(w—w)xl, M=Ruxl—}(w—w)s?2
Placing V" = o, using the value of x/ thus found and inserting
also the values of R; and =’ the expression for the moment

becomes
M=Lon22=32F (2)
8 I—222 '’

which is the maximum value for any given 2. The position of
the load to give the maximum maximorum moment is found by
putting dM/dz = o which gives the cubic equation 322 — 32+ 1
'=0; one root of this is #=0.395, and the others are inapplica-
ble on account of being negative or larger than unity. Placing
this value of 2z in (2) the greatest positive moment is found to
be 0.1506 x } w/?% or about 'y w/

For the right Hand part of the span the shear and moment
may be written for a section distant v/ from the right support
by taking the forces on the right of the section, thus,

V=R,+wvl, M=Ryuwl+}wi2

From the first of these it is seen that the shear is zero when
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v=1}, and for this M is — Jsw/?; hence — gyw/? is the
greatest negative moment caused by the live load.

When the live load extends as far as the hinge the reactions
become }w/ and —}w/ and the tension in the hangers per
linear unit is 4 w. If the entire span be fully loaded the reac-
tions become zero and the tension in the hangers is w per
linear unit. Thus under full live load there are no stresses in
the truss. '

The theory here given is only correct when the live load is
very light so that the cable is not sensibly deformed from a
parabolic curve. Strictly speaking the supposition of uniform
tension in the hangers under a partial load, or even under a tull
live load, cannot be realized, and the theory at best is an imper-
fect one. It is customary to make the webbing of uniform size
throughout, designing it for the shear 1 w/, and also to make
the chords uniform to resist the moment gyw/% It is seen
that the maximum shear is one-third, and that the maximum
moment is between one-sixth and one-seventh, of those for a
simple truss of the same span. The truss with center hinge is
thus a little heavier than one with unbroken chords.

.

Prob. 52. Prove that the point of maximum maximorum posi-
tive moment is at a distance 0.234 / from the end of the truss.

ART. 53. DiscussioN oF Truss THEORIES.

Notwithstanding the imperfections in the fundamental as-
sumptions of the preceding analysis the theory has been gen-
erally used in the design of suspension trusses. The dead load,
being usually large compared with the live load, has kept the
cable deformations due to the latter from deviating far from
the parabolic form, and thus it has been possible to design
trusses under the theory which in practice have proved fairly
satisfactory.
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The imperfection of the theory can be better seen by taking
a single load P on the unhinged truss of Fig. 74 at a distance
z/ from the left end. Then under the given assumption the
reactions are R, = P(} —2)=—R. Here if =0 or 2 =1,
the load comes at one of the supports, one reaction is 3 2 and
the other — } P; thus the truss is stressed by a load at one of
the supports, which is impossible. In like manner for a single
load P on the left hand part of the truss with center hinge in
Fig. 75 the reactions are R, = P(1 — 32) and R, =— Pz;
here z cannot be greater than 4; if s = o the reaction R, is
P while R, is zero. This is as it should be, and it is to be
observed that the introduction of the condition imposed by the
center hinge has much improved the theory and rendered the
truss a more rational one than the structure with unbroken
chords.

It is further noticed that in both trusses the reactions are
zero under full live load and that the entire load goes upon the
hangers. This can scarcely be the case since both cable and
truss must deflect under the load and under this deflection it is
probable that a part of the load must be carried by the truss,
for the deflection of a truss implies that it is stressed. The
following investigation of this case indicates that if the truss be
very light compared with the cable most of the load will go
upon the latter, while if the truss be very heavy compared with
the cable but little of the load will be carried by the latter.

Let the entire truss with unbroken chords, as in Fig. 74, be
covered with the live load w/. Let fw/ be the part of the load
that goes upon the cable and (1 — )=/ the part that is carried
by the truss, f being a fraction less than unity whose value is
to be determined. The deflection of the cable under the uni-
form load fw!/ is from Arts. 44 and 45,

_ 38 _HI(3+4165%) _ fw’(3 + 165?)

16 s 16 sAE 128 2AE

R (1)
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in which 4 is the cross-section of the cable. Now the deflection
of the truss under the uniform load (1 — f)w/ may be written
from the theory of flexure by regarding it as a beam with the
constant moment of inertia /. If the chords be of uniform
cross-section this is quite allowable, and putting A’ for the
chord cross-section and & for the depth of the truss the value of
lis } A'd®.  Then,
_5s(=fwit _5(1—f)w

¥ = 384 EI ~ 192 A'Ed?* @)
is the deflection of the truss at the middle of the span. As
these two values of the deflection must be equal, there is found

1 (9 + 4852) A'a?

7o t oA ()
which shows that £ depends upon the ratio of the chord section
to the cable section and also upon the ratio of depth of truss
to length of span. If the ratio 4’/A be very small then f is
nearly unity or most of the load goes to the cable; if 4'/4 be
very large then f is nearly zero or most of the load is carried
by the truss.

For any existing suspension bridge the value of f can be
computed from formula (3). For example let /= 1000 feet,
/s =100 feet, s =0.1, A =40 square inches, 4’ =20 square
inches, 4= 30 feet; then f is found to be 0.70 and 1 —f is
0.30, or 70 per cent of the uniform live load is carried by the
cable and 30 per cent by the truss. The stresses in the truss
due to the uniform load 0.30/ are then computed, the maxi-
mum shears being 0.30(} w/) and the maximum moment 0.30
(3 w/?), which are more than double the maximum values given
by the theory of Art. 51.

For the truss with center hinge a similar line of investigation
may be followed, the deflections of cable and truss being found
for the quarter point of the span. If 4’ be the sag of the
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cable at this point the equation of the parabola shows that
K =% %, and thus 84’ = § 8% in which 8% has the value given by
(1). For the truss whose span is 4/ the hinge drops the dis-
tance 8% and the middle the distance } 8% without causing curva-
ture or stress, and thus the actual deflection of the truss at the
middle is } 8% where 8% has the value given by (1). Again the
deflection of a truss with span }/ is found by placing %/ for
/ in (2). Equating the two values there is found

2\ 4' 42

Applying this to the same numerical data as before, f is found
to be 0.37 and 1 — f to be 0.63, showing that the truss carries
about five-eighths of the full uniform live load. The maximum
shear in the truss is then 0.315 (/) and the maximum
moment is 0.158 (} w/2%), both being about the same as the
values given by the theory of Art. 52.

The above discussion indicates that the truss with center
hinge is far superior in carrying capacity to the truss with un-
broken chords and that its chord stresses are less under full
uniform load. As it relieves the cable of load the latter may
be made lighter than when a truss without hinge is employed.
This discussion, however, is not perfect as it neglects the effect
of the load in elongating the hangers and it supposes that all
the hangers receive the same tension. When the true theory
of suspension structures is developed, it will be found that the
hangers are not equally stressed under live load, those near the
middle receiving a higher proportion of the load than those .at
the ends. Under such conditions the curve of the cable is not
the common parabola, and the elastic curve in which the truss
deflects is not the biquadradic parabola given by the theory of
flexure. The expressions for deflection of cable and truss will
hence be different from those stated above, but the general con-
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clusion that the value of # depends upon the ratios A'/A and
d/! will not be altered. It is not the place in an elementary
text-book to dwell upon the examination of doubtful or difficult
theories, and perhaps the above discussion has been too
lengthy. The student may refer to MELAN’s elaborate investi-
gation given in Handbuch der Ingenieurwissenschaften (Leip-
zig, 1890), as the most complete and correct one yet presented.

Prob. 53. For the above numerical data find an expression
for the deflection of the no-hinged truss at the quarter point
of the span, equate it to the deflection of the cable and show
that the value of f thus found is less than o.70. :

ART. 54. TEMPERATURE STRESSES IN TRUSSES.

The effect of changes of temperature upon the cable has
been discussed in Art. 46. When the cable elongates the truss
must deflect downward thus throwing a part of the load upon
it; when the cable contracts the truss is deflected upward and -
is also stressed. An approximate investigation will now be
made to determine these stresses in the truss having no hinge.

Let the hangers be adjusted so that at the standard tempera-
ture of 50 degrees there will be no stresses in the truss, all the
load being carried by the cable. When the temperature rises
¢ degrees the cable elongates the amount ef, where ¢ is the
length of the cable and e is the coefficient of expansion. From
Art. 44 the deflection of the cable at the middle of the span is

sn=3%_3¢% (1)

where s is the sag ratio. This must be equal to the deflection
of the truss. Let S be the unit-stress in the chords at the
middle of the truss, & the depth of the truss, then from the
theory of flexure (Mechanics of Materials, Art. 37),

_552
ok 21 B (2)
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.

which is the deflection at the middle of the truss. Equating
the values of 8% given by (1) and (2) there results, after replac-
ing ¢ by its value in terms of / and s,

_(9+24sY)etEd
S 105/ ’ )

which is the unit-stress in the chords at the middle of the truss,
due to a rise or fall of # degrees. When the temperature rises
this unit-stress is tension in the lower and compression in the
upper chord, when it falls the reverse is the case. It is seen
that these stresses are independent of the cross-section of the
chords and that they increase with the depth of the truss.

For example, let the span be 1000 feet, the sag 80 feet, the
depth of the truss 20 feet, the coefficient of expansion 0.0000070,
the coefficient of elasticity 30 000 000 pounds per square inch,and
let it be required to find the temperature stresses in the chords
for a rise or fall of 60 degrees. Here s = 0.08, ¢ = 0.0000070,
¢ = 60, £ = 30000000, 4 = 20, / = 1000, and formula (3) gives
S = 2900 pounds per square inch. As the working unit-stress
for the chords of a truss is about 10 000 pounds per square inch,
it is seen that here 29 per cent of this is required for tempera-
ture stresses, thus leaving only 7100 pounds per square inch to
resist the stresses due to live load.

The temperature stresses in the truss are much greater than
those in the cable. In the numerical example of Art. 46 it was
shown that the variation in cable stress due to a change of 60
degrees in temperature was less than one per cent, and the
same holds for the unit-stress. The truss with center hinge
is generally supposed to eliminate temperature stresses in its
chords, and of course there can be none at the middle. It was
however shown by LINDENTHAL in 1888 that such stresses exist
and that at the quarter points of the span they are of the same
intensity as those at the middle of the truss without a hinge.
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The correctness of this view is readily verified by reasoning
similar to that in the last article. The sag 4’ of the cable at
the middle of the half-span is §4, and its deflection §8%; of
this } &% is caused by the drop of the center hinge, leaving
0% as the true deflection for the truss. Thus &4’ for the
truss is one-fourth of (1), and as the length of the truss is U
the value of 8%’ for the truss is also one-fourth of (2); equating
these the value of the unit-stress S is the same as given by (3).
Thus the truss with center hinge can claim little advantage on
account of lower temperature stresses.

The value of S above deduced is for the middle of the span.
To determine the other stresses it is only necessary to find the
uniform load per linear unit that would produce S and from
this compute the other stresses as for a simple beam. Thus,

8A4'Sd .
w = TR (4)

where A’ is the chord cross-section and & the depth of the

truss. In the above numerical example, for the truss without

center hinge, let 4’ = 20 square inches and &= 30 feet, then.
w' = 14 pounds per linear foot, and thus a temperature change

of 60 degrees here produces about the same stresses as a heavy

fall of snow. The temperature stresses, it is seen, cannot be

decreased by increasing the areas of the cross-sections, but they

can be decreased by diminishing the depth of the truss.

Prob. 54. Prove that the maximum shear due to temperature
is twice as great in a truss with center hinge as in a truss with-
out one, the depths and chord sections being the same in both
trusses. ’

ART. §55. LIMITING AND PRACTICABLE SPANS.

As the span is increased the cable becomes more highly
stressed and a great cross-section is necessary. The longest
possible span for a cable carrying no load except its own
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weight is that for which rupture would occur. Taking the
ultimate tensile strength of steel wire at 200000 pounds per
square inch, a cable one square inch in section and weighing
3.4 pounds per linear foot will rupture when the span has such .
a length Z’ that the stress in it becomes 200000 pounds. The
expression for this stress is given by (3) of Art. 43, and making
w = 3.4 and 7 = 200 000 the limiting span is given by

I = 8sT _ 4705905 (1)
wWVI+ 1682 VIi+ 1652

from which the following values of L' are found for different
values of the sag ratio,

§ = '}’ ‘110': 7[12') 114"
L'=152610, 43600, 37210, 32320 feet.

Thus for a sag ratio of } the limiting span for a steel wire is
about ten miles, and for a sag ratio of {4 about six miles.

The limiting practicable span for a steel cable carrying only
its weight is that for which the unit-stress reaches the highest
allowable limit, say 60000 pounds per square inch. Using
60 000 instead of 200 000 in (1) these spans are,

s= 4 o T e
L =15 780, 13 110, 11 160, 9 700 feet

and thus the limiting practicable span for an unloaded cable is
from two to three miles long, depending upon the sag ratio
employed.

When the span is shorter than these values of L dead loads
may be hung upon the cables, and if it be sufficiently short live
loads may pass over the suspended structure. Let w, be the
weight of the cables per linear foot of span and A their cross-
section in square inches. Let w, be the total suspended load
per linear foot, exclusive of cables. Then using 60 000 pounds
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per square inch for the maximum unit stress in the cables, T is
60000 4, and 3.4 4 is w,; hence

/= 8s x 600004 _ 141 180 wys (2)
(wy+ w,) VI+ 1657 (wy + w,y) VI +16s¢

gives the maximum practicable span of a suspension bridge for
the loads w; and w, per linear foot. For example, if the cables
have a net section of 536 square inches their weight per linear
foot is 1822 pounds; let w, be 10000 pounds per linear foot,
then the maximum practicable span for a sag ratio o.I is
2020 feet. :

Formulas (1) and (2) give no information except that ex-
pressed by (2) of Art. 43. The problem of maximum practi-
cable span for a given live load introduces elements of such
a complicated nature that general formulation is impossible.
The live load being assumed, there is first to be arranged the
floor system to support it and the truss to carry the floor, this
truss to be stiffened against wind and have due provision
made for temperature stresses. The dead load of the truss will
be arranged to be carried to the cables by the hangers, but
differences of opinion will generally prevail as to the propor-
tion of live load which the cable will take (Art. 53). If the
dead load can be roughly expressed as a function of the live
load and the span, then w, in (2) is a function of / and for an
assumed w,; the maximum practicable span can be computed.
This method was followed by the Board of U. S. Engineer
Officers of 1894, and its report contains the best solution of
the problem thus far made. The live load was assumed at
3000 pounds per linear foot of track, there being six tracks, and
the maximum length of train taken as 1500 feet. The analysis
gave for the suspended load in pounds per linear foot

w, = ZLZ%‘LZZ_Q + 13 605 + 3.24906
+ 0.00055335 /2 + 0.000000003 /8. (3)
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The cables were taken as sixteen in number, each being
21} inches in diameter and hence w; =17917. Inserting w,
and w, in (2) and, using a sag ratio of }, the solution gives
/= 4335 feet which is the maximum practicable span for the
assumed conditions. The dead load of this structure, exclu-
sive of cables, was found to be 38 386 pounds per linear foot,
and the allowable live load, if uniformly distributed, to be
6353 pounds per linear foot. In no system, except the suspen-
sion one, is a span of 4000 feet practicable.

Prob. 55. ‘For a railroad suspension bridge having six tracks
compute from (3) the weight w, for a span of 3200 feet. Then
from (2) compute the weight of the cables per linear foot, and
if they be eight in number find the net section of each.

ART. §6. UNSYMMETRICAL SPANS.

It sometimes happens, particularly in the design of light foot
bridges, that it is desirable to have one tower higher than the
other, the roadway being on a heavy grade. In such a case the

span is unsymmetrical, as B,

the vertex C of the parabola M
is not at the middle of the 4/ _|§ ¢ IF :
span. The position of the ' Fig. 76.

point C is readily determined by the condition that the hori-
zontal component of the cable tension must be the same in
all parts of the span.

Let /; and /%, be the heights of the tops of the towers above
the vertex C, and let z be the horizontal distance from the left-
hand tower to the vertex. The sag ratios for the two parts
of the span then are

/ey Y (1)

—_ 2
Py _ BT 20—2y
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and the horizontal tensions are by (1) of Art. 43,

H= w(zz}, : H=w§21—2z! (2)
85, . 8sy .
and hence the value of z is '
/
=— (3)
1+-2
51

This inserted in (2) gives the horizontal tension A, and then
Ty=HV1+ 1652, Ty =HV1 41652,
are the tensions in the cable at B, and B,. It is seen that it

is impossible to have the same sag ratio for the two parts of
the span unless the towers are of equal height.

Suppose the span to be 1000 feet and let it be required that
the sag ratio shall be {5 on one side and } on the other. Then
(3) gives z=4%/=400 feet, and /— z =600 feet; accordingly
from (1) the sag 4, is 66§ feet and the sag 4, is 125 feet.

Prob. 56. A foot suspension bridge 800 feet long is designed
for a load of 250 pounds per linear foot. The difference in
level of the tops of the towers is to be 21 feet, and the sag ratio
on the side of the higher tower is to be §. Find the position
of the vertex of the parabola, the horizontal tension 7 and the
tensions 7; and 7, :

ART. §7. STIFFENED CABLES.

Many methods have been suggested for stiffening the cables
of a suspension structure so as to prevent the oscillations due
to wind, live load, and changes of temperature. A system of
trussing connecting the cable with the roadway is a natural
method of procedure and has been used to a slight extent for
short spans. It is, however, generally found more convenient
in such cases to make the cable of links or eye bars, and thus
the structure is no longer a true suspension bridge. Fig. 77
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shows one method of trussing the main span, hinges being used
at B, (, B. Here the structure is an inverted three-hinged arch
and the computation of its stresses is to be made by the methods
of Chap. V.; if the hinge at C be omitted it is an inverted two-
hinged arch and the analysis in Arts. 87-9o applies to it in all

Fig. 77. Fig. 78.

respects. When this method of trussing is used for the side
spans also, as in Fig. 78, the structure becomes a cantilever
bridge with the suspended truss omitted and the methods of
Chap. III apply directly to its discussion. It is thus seen that
the effect of trhssing the cables in this manner is to turn the
suspension structure either into the arch or into the cantilever
system, the cable forming the upper chord, while the roadway
is supported on the lower chord. The upper chord need no
longer be a parabola, but may be built to any desired curve, the
lower chord receives heavy stresses, and indeed all the dis-
tinctive features of the suspension system have disappeared.

Another method of bracing the cable is shown in Fig. 79;
here the cable is trussed on its upper side by bracing connect-

Fig. 79. Fig. 8.

ing it with two straight chord members running from the tops

of the towers to the middle of the cable. The Point street
bridge at Pittsburg, Pa., built in 1877 by EDWARD HEMBERLE,
is of this type, the main span being 800 feet in length between
centers of towers and the sag 88 feet. The cable is made of
eye bars, while the straiglit upper chords are designed to take
both tension and compression; the roadway is attached to the
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cables by vertical hangers and it is also stiffened by two trusses
8 feet in depth. Under a load of 475 tons distributed over the
roadway the deflection at the middle of the span was 4 inches.
See Engineering News, July 8, 1876, and April 14, 1877, for
detailed descriptions of this interesting structure.

Fig. 80 shows a plan in which there are two parallel cables
or chains connected by a system of bracing. Designs for a
bridge over the Hudson river at New York have been made on
this plan by G. LINDENTHAL, the design of 1894 being for a
main span of 3100 feet; the parallel cables are to be 55 feet
apart in the vertical plane and made of wire links looped around
steel shoes which are joined by pins at the panel points. The
sag of each cable is to be 310 feet and the braced cable rib is
to be supported on large pins at the tops of the towers. The
hangers are 50 feet apart, supporting the floor beams of two
decks, which are provided with vertical stiffening trusses and
horizontal wind trusses. See Report of the Board of Engineers
upon the New York and New Jersey Bridge for detailed de-
scriptions; this report was published in the engineering peri-
odicals of September, 1894, while the report of the Army board
appeared in November, 1894.

It is apparent that these methods render the braced cables a
structure which involves all the principles of the arch, for an
inverted arch differs from the common arch merely in the ten-
sile and compressive stresses being interchanged. Chapter VI
- will give the analysis by which the stresses may be determined,
and it will be seen that the stresses due to changes in tempera-
ture are important ones that must receive careful attention.

Prob. 57. See Transactions American Society of Civil Engi-
neers, 1896, Vol. 36, p. 418, for a comparison of different
designs for the proposed suspension bridge over the Hudson
river at New York. Compare the estimated weights and costs.
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ART. 58. CONCLUDING REMARKS.

For spans less than 500 feet the suspension system cannot
compare with the simple truss in economy, except for light foot
bridges. For ordinary highway traffic short spans may some-
times be used in city parks on account of the @sthetic effect, but
these will be more costly than separate trusses and far less
rigid. For spans between 500 and 1000 feet the suspension
system cannot compete with the cantilever system or with the
arch in respect to either economy of construction or stiffness.
Between 1000 and 1500 feet, also, the cantilever bridge will
usually have the greater degree of economy. Beyond 1500
feet is thefield where the suspension bridge has its economic
advantages, and as spans of this length will rarely be built, the
suspension system will always be one of limited application.

But two suspension bridges for railroad traffic have been com-
pleted and used. The Niagara bridge, built in 1854, carried
heavy railroad traffic for 43 years, its only fault being its large
deflection and the slow speed consequently required in crossing
it. The Brooklyn bridge, completed in 1883, was designed to
carry only the light passenger traffic of a cable railway and
this it has done most satisfactorily. The new East river bridge,
to be completed in 1900, will have heavier traffic (Art. 42).
For spans of 2000 feet or more, where the ratio of dead to live
load becomes large, there can be no doubt but that the sus-
pension system is entirely feasible for heavy railroad traffic,
and when the long span of 3200 feet over the Hudson river at
New York is built it will be a suspension structure.

Whether the braced cable system is more advantageous for a
long span structure than that of unstiffened cables is an open
question concerning which different opinions are held. By
trussing the cables the stiffness under live load is much in-
creased and the weight of the roadway trusses is decreased;
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new elements are however introduced, as the braced cables
become inverted arches which are subject to complex stresses
arising from temperature and live load, and a comparison of the
two plans becomes of the greatest difficulty. The braced sys-
tem introduces advantages, but it appears also to introduce
elements of uncertainty and complexity. The history of the
economic development of bridge structures shows that the lines
of progress have been in the direction of eliminating uncertain
elements and holding fast to those features which secure cer-
tainty in the determination of strésses. Thus, double systems
of webbing have mostly gone out of use, the cantilever structure
has eliminated the uncertainties of the continuous girder, the
partially-continuous swing truss has avoided some of the doubts
of the older complex draw bridges, and the suspension truss
with center hinge is more rational and more effective than one
with unbroken chords. If these laws of development continue
to hold good for very long spans, the system of bracing the
cables and thus introducing complexity does not seem to be in
the right direction. But in these long spans a limit is reached
to which the general laws of bridge evolution thus far observed
may not directly apply, and hence it is not wise to hazard a
positive opinion as to the conclusions which may result from
the experience of the future.
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CHAPTER V.

‘THREE-HINGED ARCHES.
ART. 59. METALLIC ARCHED ROOFS.

A simple truss under vertical loads has vertical reactions
provided one end rests on rollers or on a rocker, so as to allow
horizontal motion due to the deflection of the truss and to
changes in temperature. When the reactions are inclined
under vertical loads, whether this is due to the condition of its
supports as in Fig. 81, or to a modification of its form as in Fig.
82, the truss becomes an arch. The loads on the‘ arch produce

o SPORR

!4,............../.......... t

Fig. 81. Fig. 82.

a horizontal thrust at the ends equal to the horizontal component
of each inclined reaction. The thrust may be resisted either
directly by the abutments or by a tie uniting the two supports.

The classification of arches is based on the number of hinges
which each truss contains. There are three principal classes
containing respectively three, two and no hinges. The simplest
form is typified in Fig. 82 and has three hinges, one at each
support and one at the crown. When two hinges are employed
they are placed at the skewbacks or supports. When the arch
has no hinges its ends are usually fixed rigidly to the abutments
or piers. When but one hinge is used it is placed at the crown,
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but as so few arches have been built with a single hinge and as
probably no more will be built on account of the theoretic dis-
advantage of such an arrangement, this class will not be con-
sidered. In this chapter arches with three hinges will be
discussed.

Three-hinged arches are generally used for railroad train sheds

and for exposition buildings of spans that exceed those for which”

simple trusses may be economically employed. The longest
span simple roof trusses in the United States are those of the
train shed of the Central Railroad of New Jersey at Jersey City,
the span being 142’ 4/’ center to center of end pins. Their form
is similar to that shown in Fig. 124 of Part II.

The following table gives three of the largest arches yet con-
structed for train sheds and two of those for exposition buildings:

Span /. Rise 4.
1. Penna. R. R. at Jersey City, 1892 . . . . . . 252'8" go’ o”
2. P. & R. R. R. at Philadelphia, 1893 . . . . . 259'0" 88’ 35"
3. Penna. R. R. at Philadelphia, 1894 . . . . . . 300'8" 108’ 53"
4. Machinery Hall, Paris Exposition, 1889 . . . 362’ 9" 149’ o”
5. Manufactures and Liberal Arts Building, Columblan
Exposition, Chicago, 1893 . . . . . . . . 3680" 206’ 4’

A skeleton diagram of the arches of the Broad Street station
of the Pennsylvania Railroad in Philadelphia is given in Fig. 83,
and an illustrated description showing details of the design may
be found in the Railroad Gazette, June 9, 1893, and in Engineer-
ing News, June 1, 1893. Those of the station at Jersey City
are of the same form and are described in the Railroad Gazette,
Oct. 2, 1891, and Engineering News, Sept. 26, 1891. The
details of the arches of the Philadelphia and Reading Terminal
station are given in Engineering News, Jan. 19 and Feb. 2,
1893, and those of the Manufactures and Liberal Arts Building
of the World’s Columbian Exposition in the same periodical for
Sept. 1 and 8, 1892. The form of the latter is shown in Fig.
87, Art. 60. As indicated in Fig. 83, the horigontal thrust of
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roof arches is usually taken by a tie located below the level of

the floor. P

- y3
Fig. 83.

Three-hinged arches are analogous to simple trusses because
their stresses are fully determinate statically, while those having
two or less hinges are analogous to continuous structures.

Prob. 58. Refer to the Engineering News, June 30, 1892, and
Nov. 9, 1893, and to the Engineering Record, April 20, 1889,
March 21, 1891, and July 3, 1897, for descriptions of other
metallic roof arches with three hinges. Copy their skeleton
diagrams and record the principal dimensions.

ART. 60. REACTIONS OF THE SUPPORTS.

Let a single concentrated vertical load P be placed on the
left half of an arch with three hinges, at a distance of £/ from
the left support as shown in Fig. 84. Let V] and V, be
respectively the vertical compo-
nents of the inclined reactions at
the left and right supports, while
H is their horizontal component.
These quantities may be found by
means of the three conditions of
static equilibrium, viz.: The sum
of the horizontal components of
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the external forces equals zero, the sum of their vertical com-
ponents, equals zero, and the sum of their moments equals
zero. The first condition shows that the thrust // is the same
at both supports. The second and third of the following equa-
tions are obtained by taking moments respectively about the
right support and the hinge at the crown.

Vi+ V,—P=o, WVi—P(-k)=o,
YVl — Hie— P31 — k) =o,

whence V= P(1 — k), V,= Pk, and H = Pkl/2/. These
values of V] and Vj are exactly the same as if the load P were
supported by a simple truss of the same span. The influence
of the center hinge on the reactions therefore adds the hori-
zontal thrust /7. If the load P be placed on the right half of
the arch and 4/ be measured from the left support the value of

the thrust becomes
2

Both expressions for /7 show that it varies inversely as the rise
of the arch. In case a tie is employed, the magnitude of A
equals that of the stress in the tie provided one end of the arch
rests on rollers.

The vertical and horizontal components of the pressure of
the right half against the left half of the arch in Fig. 84 must
be equal to those of the reaction at the right support since there
is no load on the right of the center hinge. The line of action
of the inclined reaction R, at the right support must also pass
through the middle hinge or there will be rotation of the right
segment.

If the vertical load be replaced by an inclined or a horizontal
one the reactions are found in a similar manner, by substituting
the proper values of the lever arms of the load. The reactions
due to any number of loads may be obtained by taking the sums
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respectively of the values of V], V}, and A found for each apex
load separately. ’

The reactions are readily found by graphics as indicated in
Fig. 85. The line of action of R,, which must pass through
the hinges 4 and ¢ as previously explained, 1s ‘produced to meet
the load at the point 4, and
then the line of action of &,
is passed through the hinge %
a to the point 4, since the;
three forces P, R, and R,,
being in equilibrium, must
meet in a point. On draw- :
ing parallels to these lines’
 through the extremitiesof 2 in
the force diagram the values
of R, and R, may be obtained
by measurement with the
same scale of force with
which P is laid off. By Fig. 8.
drawing the horizontal through o, the values of A, V] and V,
may be found, if desired. The two right lines 7c and ¢# con-
stitute the locus of the point of intersection & of any load and
its corresponding reactions. These lines will be called the
“reaction locus.”

This method applies without any modification to horizontal
and inclined forces or loads. In'order to find the reactions due
to any number of loads the resultant may be obtained for all
the loads on each half of the arch and the respective reactions
due to the two resultants may then be combined in the usual
way. A neater and more expeditious method is given in Fig. 86.
All the loads are laid off in succession on the load line, and by
taking a pole ¢ at random, two equilibrium polygons are drawn,
one for each segment of the arch. On drawing rays parallel to

€
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their closing lines, the resultant of the loads on each segment
is divided into two parts, thus giving the loads which are trans-
ferred to its supporting hinges by the action of the segment
as a simple truss with inclined parallel reactions. The reac-
tions of the arch are evidently not affected by replacing the
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Fig. 86.

given loads by those just found. P,, P and P, are the loads
transferred to @, ¢ and & respectively. The load P, acting
alone at the crown causes the reactions R,’ and R,’ whose lines
of action are ac and é¢, and hence the rays marked R, and R,/
are drawn parallel to these lines. The loads P, and P, acting
alone cause reactions at @ and & respectively equal and opposite
to these loads. The final reactions are therefore found by com-
position to be R, and R, as shown.

If some or all of the loads are inclined it may be preferable
to take a separate pole for each equilibrium polygon to avoid
polygons of inconvenient shape, size, or position. In Fig. 87
the construction is given to find the reaction due to the normal
wind loads on the left side of the arch. The lines of action of
P, and P, are parallel to the long chord of the load line which
gives the direction and magnitude of the resultant of all the
wind loads. The equilibrium polygon is drawn by means of
the pole 0. Only a few of the rays are shown. The reactions
due to P, are R' and R, drawn respectively parallel to ac and
be, and the final reactions are R, and R,. A point in the line of
action of the resultant is found by producing the first and last
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sides of the equilibrium polygon, and the results are checked
by observing whether the reactions meet the resultant at the
same point. In Fig. 87 the point falls beyond the limits of the
diagram. : :

Prob. 59. The dimensions of the main arches of the Cleve-
land Arcade roof are given in the Engineering Record, March
21, 1891. Find the reactions due to a wind pressure of 40
pounds per vertical square foot on the roof, including the venti-
lator. The normal wind pressure is given in the table in Art.
19 of Part II.

ART. 61. STRESSES IN ROOF ARCHES.

After the reactions are obtained the stresses in the members
of a three-hinged arch may be found either by the analytic or
by the graphic method in the same way as for simple trusses.
If the stresses are found analytically the method of moments
is usually preferred to that of the resolution of forces (see
Part I, Arts. 4, 5, and 7). In some cases, however, the latter
method is more convenient for the web members after the
chord stresses have been found by moments. While the analy-
tic method is simple in theory its application to trussed roof
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arches often leads to tedious computations in finding the lever
arms of the external forces and internal stresses. In all cases.
the results should be checked by measuring the lever arms on
a truss diagram drawn to scale. If the diagram be carefully
drawn to a large scale the lever arms may often be obtained
with sufficient precision by measurement only.

In general the graphic method is the most convenient. Start-
ing with the reaction R, in Fig. 86 (Art. 60) a stress diagram
for the left segment may be drawn in the usual way. In order
to avoid the accumulation of errors, it is desirable to work from
each hinge toward the middle of the segment. This requires
the pressure of the right segment against the left one to be:
known. '

. If the load 5 at the crown be regarded as on the right seg-
ment the pressure against the left segment at the hinge is.
represented by the ray joining o' with the point in the load line
between the loads 4 and 5, the direction of the force being
toward o/ or toward the left: If the load 5 be regarded as on
the left segment the required pressure is then represented by
the ray drawn to the point between loads 5 and 6. An exami-
nation of the force diagram in Fig. 86 shows that if the vertical
load on the two segments is symmetrical with respect to the-
vertical through the middle hinge both in magnitude and posi-
tion that the reaction of one segment against the other is hori-
zontal and equal to /A, provided that one-half of the load at the
hinge be regarded as on each segment.

It is frequently advisable also to check an intermediate stress.
This may be done in the following manner. Let an equilibrium
polygon be drawn whose first and last sides coincide with the:
lines of action of the reactions at @ and ¢.  This requires o’
which is the intersection of the rays representing these reac-
tions to be used as the pole. Fig. 88 is a portion of Fig. 86
after the equilibrium polygon is drawn. Let a section be passed.
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cutting the middle panel of the segment. The side B of the
equilibrium polygon, which lies between the lines of action of
loads 2 and 3, is the line of action of the resultant of all the
external forces on either side of the section. Considering the
forces and the part of the truss on the left of the section the
known direction of the resultant is indicated by the larger

Fig. 88.

arrow, and the unknown stresses by the smaller arrows directed
away from the section. The stress in the upper chord may
now be found by taking moments about ¢, the intersection of
the diagonal with the lower chord member cut by the section.
The moment of the resultant is &'~ and when this is divided by
the lever arm of the upper chord its stress is the quotient. In
this case the stress is compression.

If the vertical distance s from ¢ to the line of action of R’ be
measured, the moment R'» may be replaced by Az, for from
similar triangles (similar, because the angles are equal), »/s
= H/R' whence R'r= Hz. Similarly the stress in the lower
chord may be found by taking moments about the point where
the diagonal intersects the upper chord. As the moment at the
center hinge is zero the equilibrium polygon must pass through c.

If the dead load is symmetrical it requires a stress diagram
for but one segment. The snow load also requires one diagram.
For the wind load two diagrams are drawn for the same segment,
since it requires less labor than to construct one diagram for each
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segment. Referring again to the left segment in Fig. 86 the
first diagram is for the reactions R; and R, but with the latter
applied at ¢ instead of &, while the second is for two equal and
opposite reactions applied at 4 and ¢ respectively, whose magni-
tude equals R, and whose lines of action coincide with the
chord ac. In all of these diagrams especial care must be
exercised in drawing their lines parallel to the true direction of
the truss members which are frequently much shorter than them-
selves. Where the panel points lie on arcs of circles, as is
‘frequent]y the case, the direction of a chord member is best
determined by means of the radius drawn to its middle point.

It is evident that to avoid ambiguity in stress only two mem-
bers in éither segment can meet at a hinge. Sometimes as
shown in Fig. 83 members are added to give the appearance of
a continuous curve at the crown for zesthetic reasons, but they
are arranged so as to permit the necessary motion of the truss
and do not transmit any stress. In other cases nearly the same
effect is produced by the addition of members to each segment
as illustrated in outline in Fig. 87. Let the student examine
the details in the periodical to which reference is made in Art.
59. The treatment of roof trusses with counter-braces was
fully illustrated by means of an example in Art. 63 of Part II.

Prob. 60. Find the stresses in the main arch whose skeleton
diagram and dimensions are given in Engineering News, Nov.
9, 1893, due to a wind pressure of 40 pounds per vertical square
foot.

ART. 62. METALLIC ARCHED BRIDGES.

The three-hinged arches used in bridges are usually composed
of a horizontal upper chord and a curved or broken lower chord
united by vertical and diagonal bracing as illustrated in Fig. o1,
Art. 64. Such an arch is designated as “spandrel-braced.” The
hinge at the crown is generally piaced in the lower chord, and
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the floor system is supported directly by the upper chord at the
panel points.

The highway bridge across the Mississippi River at Minne-
apolis, erected in 1888, contains two arches with a span of
456 feet and a rise of go feet, these being the largest three-
hinged arches in this country. The next in size is the Driv-
ing Park Avenue bridge at Rochester, N. Y., the span being
428 feet and the rise 67 feet. A description of this bridge
may be found in the Engineering Record, July 18 and August
1, 1891. The Panther Hollow bridge in Schenley Park, Pitts-
burg, Pa., completed in 1898, has a single span of 360 feet
and a rise of 45 feet. The arches are of the same type as
the preceding one, and have 20 panels. Each of the arches
of the Stony Creek bridge, on the Canadian Pacific Railroad,
has two chords which are about 20 feet apart connected by
vertical and diagonal bracing so as to divide the arch into 16
panels, while the weight of the floor and live load is trans-
ferred to the upper chord at only six points including its
extremities. The span is 336 feet and the rise 8o feet 813
inches. An illustrated description and detail drawings are
given in Engineering News, August 2, 1894. An arch of
short span, but with a solid web, is described in Engineering
News, August 16, 1890. The arch of the Brooklyn-Brighton
Viaduct has its upper panel points located on three right lines
while the lower panel points lie on a parabola. The details of
this arch are given in Engineering News, October 25, 1894.

The Belle Isle Park bridge has a span of 48 feet 10§ inches
and a rise of 3 feet 3% inches. This arch is not only notable
on account of its unusually small rise but also because consid-
erable attention was paid to zsthetic considerations both in
determining its form and in the addition of wrought iron orna-
ment. It is briefly described and illustrated in the Engineer-
ing Record, May 13, 1893.
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Prob. 61. Consult the engineering periodicals and make a
list of all the three-hinged arched bridges whose principal
dimensions can be found, giving for each arch the span, rise,
and ratio of rise to span.

ARrT. 63. Live LoADs FOR MAXIMUM STRESSES.

To determine what panel points must be loaded with the live’
load to cause the greatest tension or compression in any mem-
ber, it is necessary to investigate the influence of a single con-
centrated load in different positions. If for the truss shown in
Fig. 89 the method of moments be used to find the stress in Ly,
a section may be passed cutting U,, D, and Lg and the center
of moments taken at the intersection of U, and D, which is the

Fig. 89.

upper panel point 3. Let a line be drawn joining this panel
point with the hinge @ and extended to meet the reaction locus,
which passes through the hinges & and ¢, at the point 7;. If
any vertical load 2 be placed so that its line of action passes
through 7z it will produce no stress in Lz because the lines of
action of the reactions of the supports coincide with aZ; and &7,
as explained in Art. 60, and one of these passes through the
center of moments of L, If P be placed anywhere on the
right of this position it will cause compression in L as may be
readily seen on considering the truss on the left of the section,
which is subject to only a single external force, namely, the
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reaction whose line of action .now passes below or to the right
of the center of moments. If, however, P be placed on the
left of 7, it will cause tension in Lz as may be observed by con-
sidering the porfion of the truss on the right of the section.
The greatest tension due to the live load is therefore obtained
when all the panel points on the left of 7; are loaded, and the
greatest compression when those on the right of ¢; are loaded.

The chord member L, adjacent to the center hinge, has its
center of moments on the opposite side of the reaction locus
from those of the rest of the chords and hence loads on the left
of #; will also produce compression. The greatest compression
in L; is therefore due to the live load covering the entire truss.
If the upper chord were lowered so that the line éc passed
through the upper panel point 5 then the load on its left would
produce no stress in Z; and in that case it would be immaterial
whether the panel points on the left of § were loaded or not.

The required loading for nearly all of the chord members of
this arch differs from that for simple trusses of the usual type
because in simple trusses the chords cut by a section (which
cuts only three members) intersect outside of the lines of action
of the reactions, whereas in the three-hinged arch with spandrel
bracing the form is generally such that for nearly all of its
members the chords cut by a section intersect within the
reaction lines.

The corresponding points which mark the positions where a
concentrated load produces no stress in the different members
of the upper chord, are marked ¢. All loads on the left of ¢,
cause compression in U, while those on the right of ¢, cause
tension in it. If the center hinge were placed in the upper
chord, in which case the diagonals in the two adjacent panels
would be reversed, the position of ¢; would fall below the hinge
and then it would no longer serve as a point of division between
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the loads which produce tension and compression in (7, but the
greatest compression would be cansed when the live load
covered the whole truss.

In Fig 9o the centers of moment for the web members are
marked ¢y, ¢y, ¢, €tc. These centers are joined with the hinge
a, and the points where the connecting lines intersect the reac-
tion locus are marked 7, 7;, 4, etc. The subscripts correspond
to those of the lower chord members which are produced and
hence also equal those of the verticals to which they apply, while
they are one less than those of the corresponding diagonals.

When a load is placed with its line of action passing through
zy it produces no stress in V, and hence 7; marks a division
between adjacent loads which produce stresses of opposite

Fig. go.

character in V3, When, however, the point 7 falls below or on
the right of the center hinge it ceases to have this significance
because the load is now on the right half of the arch and the
reaction of the right support no longer coincides with éc. If a
load could be placed at 7, and supported by the left half of the
arch by means of an extension beyond the center hinge, then
the two reactions would intersect at 7,, but with the usual con-
struction the left reaction cannot pass below the center hinge.

When a center, as for instance ¢, lies on the right of the
line &¢c there will also be another point of division for the live
loads and which is located in the panel cut by the section
through V4, that is, between the panel points 2 and 3 of the
upper chord, which in this case supports the floor. Let this
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point be marked e. This result is in accordance with the inves-
tigation in Art. 48 of Part II, which depends on the fact that
the chords cut by the section intersect beyond the lines of action
of the reactions. For a load on the left half of the arch, which
may be regarded as a simple truss with two inclined reactions
at 2 and ¢, the reaction at ¢ acts in the line &¢c and hence if ¢4 is
beyond éc it satisfies the condition. The panel loads at 3, 4
and 5, which lie between the two points of division ¢ and 7,
cause compression in V3, while the remaining panel loads at 1,
2,6, 7, 8,9, 10 and 11 cause tension. The half panel loads at
o and 12 need not be considered except for the stresses in the
end verticals respectively, as they do not affect the stress in
any other member. The greatest compression in V} is caused
by panel loads o, 1, 2, 3 and 4, and the greatest tension by
panel loads 5 to 11 inclusive.

The center of moments for D, is ¢; and one point of division
is at 7; while another one is between panel points 3 and 4;
hence the greatest tension is produced by the panel loads 4 and
5, and the greatest compression by the remaining loads. Since
in Fig. 9o the point # coincides with ¢;, it shows that it is imma-
terial whether or not a point of division between I and 2 be
employed for D,. In other words the panel load at 1 does not
produce any stress in J,. Inthe same manner it may be shown
that since 7, and 7 fall below the center hinge they cease to be
points of division, which indicates that the reaction locus does
not extend below the center hinge for vertical loads.

If a uniform live load be employed, the positions of the
points of division, described above, will limit the loading for
maximum and minimum stresses. This will give two or more
partial panel loads for each position required. It is an unneces-
sary refinement to find the true limiting stresses due to a uniform
load, and the use of equal panel loads for arches is preferred
-for the same reasons as for simple trusses.



172 THREE-HINGED ARCHES. CHar. V.

Prob. 62. Prepare a table showing the loading for all the
members of the arch in Fig. 91, provided the center hinge is
placed in the upper chord and the diagonals in the two panels
at the middle are reversed.

ART. 64. COMPUTATION OF STRESSES.

Let the arch be taken whose dimensions are given in Fig. g1,

the dead panel load being 80 kips and the live panel load 24
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kips. The dead load is considerably greater than the live load
on account of the heavy pavement of the roadway and sidewalks.

The vertical and horizontal components of the left reaction
are computed as in Art. 60. The value of V] for Py, is 45 P,

while H=2L.-180_p_5p The

I H I2 2 X 36 24

P | 1ixPl1ixF Pl values of V] and A for the other panel
2’ 1o loads are simple multiples of these
p: g i values and for convenience in com-
Pl 5 bining the results due to various posi-
Py | 6 6 tions of the live load the accompanying
2 i i table is arranged. Since the half panel
7|3 3 loads at 0 and 12 affect no members
Py | 2 2 except the verticals directly below them
Pu |t ! it will save labor to omit them from the
llf’:g 552 | 7.5p | table and ﬁnall)t to :izdd a half panel l.oad

to the compression in each end vertical.

L e
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In Art. 63 it was found that the greatest tension in the upper
chord member U, is due to the live panel loads 6 to 11 inclu-
sive. Therefore

Vi=(06+5+4+ 3+ 2+ 1)34 = 42 kips,
and H=(6+5+4+3+2+1)5:—424-=105kips.

Considering the forces on the left of the section cutting U,, D,
and L4 and taking moments about the lower panel point 4,

42 X 60 — 105 X 32 + S x 12 = 0, whence S =+ 70.0 kips.

The greatest compression in U, is due to panel loads I to § inclu-
sive, and for this loading V] = 9o kips and A = 75 kips. The
equation of moments is
90X 60—75x32—24(45+ 30+ 15)+ S x12=0,

whence S = — 70.0 kips. These results indicate that under
full live load the stress in U, is zero and hence the dead load
stress is also zero. The above values are therefore the maxi-
mum and minimum stresses.

The greatest tension in the diagonal D, occurs under panel
loads 4 and 5 and the corresponding values of V] and /A are 30
and 45 kips respectively. The
center of moments for D, is on
the upper chord at a distance of
6 feet beyond the center hinge,
as shown in Fig. 92. Its lever
arm is 31.86 feet. Taking the
moments of the forces on the
left of the section,

Fig. 3.

30 X 96 — 45 X 44 — S x 31.86 = 0, whence S = + 28.2 kips.

When the load is at all the panel points except 4 and 5, ;=102
and A = 135 kips. The equation of moments is then

102 X 96 — 135 X 44 — 24(81 + 66 + 51)— S x 31.86 =0,
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which gives S =— 28.2 kips. The dead load stress in D, is
therefore zero.

In a similar manner the following reactions and live load
stresses are obtained for the vertical V, the section in this
- case cutting Uy, Vg and Lg:

Loaps. Vi. H. S.

3—5 48 60 — 38.6 kips.
1,2, 6 — 11 84 120 + 14.6
1-—11 132 180 — 24.0

Under full load the stress in Vj is — 38.6 + 14.6 = — 24 Kkips,
which being equal to the live panel load checks the result; for
since under this load there is no stress in J,, a section may be
cut around the upper panel point 3, which shows that the stress
in V3 holds in equilibrium a single panel load. The dead load
stress is consequently also equal to a panel load, or — 80 kips.
The maximum stress is — 118.6 and the minimum stress
is — 65.4 kips.

The reactions and live load stresses for the lower chord mem-
ber L are as follows:

Loabs. . H. S.

4—11 72 150 —208.3
1—3 60 30 + 18.6
1—11 132 180 - 189.7

As under full load there are no stresses in the diagonals the
horizontal component of the stress in any lower chord member
must be equal to /7. Hence the stress in Z; equals the product
of A and the secant of the angle which Z; makes with the hori-
zontal. This gives a compression of 180x 1.0541=189.7 kips, -
which equals the sum of the two stresses given above. As the
dead panel load is ten-thirds of the live, the dead load stress
in Lgis — 632.4 kips. The maximum and minimum stresses
are — 840.7 and —613.8 kips.
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The vertical V§ supports only the panel load at 6. If only
a single post is used for ¥ one of the adjacent upper chords
must be so arranged as to allow free movement due to the
deflection of the truss and to changes in temperature. - There
is no stress in U as it serves merely to hold V; in position.
The stresses in the remaining members may be found in the
same manner as those found above. As the arch is symmetri-
cal the stresses in corresponding members of the two segments
are equal.

Prob. 63. Compute the maximum and minimum stresses in
the remaining members of the arch which was used in the
preceding example.

ART. 65. ParaBoLIC LowER CHORD.

In the example in the preceding article it was found that the
stresses in the diagonals and upper chord were zero under
“full load while the stress in each vertical equalled the panel
load. This is due to the fact that the panel points of the lower
chord lie upon a parabola whose vertex is at the center hinge.
For, since the panel loads are equal, the equilibrium polygon
for the arch must be a parabola and as there can be no moment
at the hinges it must pass through them and will consequently
also pass through every panel point of the lower chord. This
indicates that there will be no bending moment at any lower
panel point and hence no stresses in the upper chord; and
since the horizontal component of the stress in any diagonal
equals the difference in the stresses in the two chord members
meeting its upper.extremity there is therefore no stress in the
diagonals. Under this loading then, the verticals simply trans-
fer the equal panel loads to the lower panel points and the
lower chord sustains all the load. This arrangement may be
regarded as an inverted suspension system.
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For three-hinged arches with parabolic lower chords, it is
only necessary therefore to compute either the greatest tension
or the greatest compression in all the members due to the live
load together with the compression in the lower chord under
full load. The least labor will be required if the greatest live
load tension is computed for the upper chord and the diagonals,
and the compression in the lower chord and verticals, as no
panel loads are then on the left of the section except in a
few cases.

If w be the load per linear unit and / the span, the reactions
7 and V; each equal § w/, and A equals w/?/8 /. As the floor
system transfers the uniform load to the panel points of the
truss, these values of J; and 7} include the half panel loads
at the ends. The value of the reactions does not depend upon
the form of the curve of the lower chord, and both 7] and V,
are also independent of the position of the center hinge. The
value of A, however, depends upon the position of the center
hinge which is generally placed at mid-span.

The lower chord may be given any curve of graceful form,
but if it is not parabolic it requires the computation of an
additional set of stresses. The lower chord of the arch at
Thirtieth Street, near Market, in Philadelphia is elliptical
or nearly so. See The Pennsylvania Railroad by JamEs
DREDGE.

.

Prob. 64. Compute the maximum and minimum stresses in the
lower chord of the arch in Fig. g1, provided its panel points
are placed on the arc of a circle which passes through the
hinges.

ART. 66. GRAPHIC ANALYSIS OF STRESSES.

If the lower chord of a three-hinged arch is not parabolic
the dead load stresses are found by stress diagrams in the
same manner as that described in Art. 61 for roof arches. If,
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however, the diagram be drawn for a uniform panel load of 1
kip the stresses due to the full live load as well as the dead
load may be obtained by multiplying the stresses given by the
diagram with the corresponding panel loads. When the lower
chord is parabolic the dead load stresses may be found in a
simpler manner like that for full live load to be explained
later in this article.

In the graphic determination of the live load stress in any
member it is desirable to obtain the stress in two parts: first,
that due to the vertical component V] of the reaction of the
left support; and second, that due to the corresponding hori-
zontal component /A of the reaction.

7 1 7 12

Fig. o4

Let the dimensions and panel loads of the arch in Fig. 93
be the same" as those given in Art. 64. Let a stress diagram
be drawn for the left half of the truss under the assumption
that this half is fixed at the right end and subject to a single
vertical force of 1 kip at the left hinge. The stresses thus
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obtained are the same in all members on the left of the diago-
nal MN as that portion of the stresses due to V; if a con-
centrated load be placed at panel point 5 when the truss is
supported in the ordinary way, provided the load is of such
a weight as to cause V] to be equal to 1 kip. Of course, if
any other unit than the kip be employed, the stresses will be
expressed in terms of the same unit. Such a diagram is shown
in Fig. 94. Next let a similar stress diagram be drawn when a
horizontal thrust of 1 kip is applied at the left hinge. This
diagram is given in Fig. 9s.

The required position of the equal panel loads is found
graphically as explained in Art. 63, and by the simple tabula-
tion given in Art. 64 the corresponding values of V; and A
are readily obtained. If now the stress in any member given
by Fig. 94 be multiplied by the number of kips contained in
the actual value of V] and that given by Fig. 95 be multiplied
by the corresponding number for /A, the algebraic sum of the
products will be the required stress, provided, that for the given
loading no panel loads are situated on the left of the section
which would be passed if the analytic method of moments were
adopted. .

With diagrams drawn to the scale of one kip to an inch the
stresses obtained for the lower chord member OH were +2.79
and —2.73 kips respectively. When the live panel loads 4 to
11 inclusive are on the truss V)= 72 kips and A = 150 kips.
The stress in OA is therefore S = + 2.79 X 72— 2.73 X 150 =
— 208.6 kips. The computation in Art. 64 gave — 208.3 kips
for the same member designated as L,

The following table'gives the corresponding values expressed
in kips for the remaining members whose stresses are given in
Art. 64. S, and S, designate the stresses due to the vertical
and horizontal forces of 1 kip applied at the left hinge respec-
tively.
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Member. Loads. ¥, H. S, Sie S.
Al 6-11 42 105 — 5.00 + 2.667 + 70.0
GH 35 48 60 - 1.89 + 0.865 —33.8
HI 4-5 30 45 + 3.02 —1.38 +28.5

Since the values of S, and S, are to be multiplied by large
quantities it is important that they be determined with care.
In order to promote accuracy in the construction of the stress
diagrams a diagram may be prepared like Fig. g6 whose in-
clined lines are respectively parallel to the diagonals and lower
chords. A large scale is employed to lay off the horizontal and

. ’ s
:<.....m.....,....,j;...\-c........ ...)li’;

Fig. 6.

vertical components of the lengths of the members as shown,
the scale for the chords being larger than that for the diago-
nals. Let the student compare the measurements on Fig. g6
with those of the truss given on Fig. 91. It is desirable that
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none of the lines in either stress diagram be longer than the
corresponding parallel in this figure.

The diagrams also possess properties which afford valuable
checks on their construction. In Fig: 94 the lines parallel to
the diagonals cut off equal distances on the load line, and in
Fig. 95 the corresponding lines meet at a point vertically above
o, the intercept being in this case 44 x 1/15=2.933 Kkips.
These quantities are the height of the upper chord above the
end hinges, the value of /4, and the panel length respectively.
It is also desirable to compute the value of the largest stress
- in the upper chord. For instance, the stress in AV due to a
vertical reaction of 1 kip is 90/8 = 11.25 kips, while that for
a thrust of 1 kip is 36/8 = 4.5 kips.

The use of the circular arrows, in determining the character
of the stresses, was fully explained in Art. 17 of Part II. It
may be well, however, to give the following illustration. The
external force 04 in Fig. 93 was laid off on the load line in
Fig. 94 from o toward a, the order of these letters indicating
that the spaces O and A were taken with reference to the hinge,
or to the truss, in the order indicated by the arrow. On taking
the letters located around the lower panel point 3 in the same
circular direction, they come in the order O-AH-G-F-0. Fol-
lowing the direction indicated by the same order o-/—g—/~0 on
the stress diagram the first of the stresses acts from ¢ toward
% or toward the right. On transferring this direction to joint
3 the stress acts away from the joint and is therefore tension.
Similarly the stresses /g, gf and fo are found to be compression,
~ tension, and tensijon respectively.

The stresses in the lower chord under full load are obtained
by laying off the horizontal oz in Fig. g6 equal to / =7.5 X 24
= 180 kips (see table in Art. 64), erecting the vertical 24 and
measuring the lines or rays om to 06 inclusive. The values ob-
tained are marked on the diagram and are expressed in kips.
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The maximum and minimum stresses in the lower chord may
now be computed. In the following table the stresses in the
third line are found by subtracting those in the second from the
stresses in the first line. The dead load stresses are 80/24 =
10/3 times the live load stresses under full load. As thisis a
simple ratio they are computed, otherwise the dead load stresses
would be found like those due to live load by laying off /= 7.5
x 80 =600 kips (using a different scale) and drawing another
vertical in Fig. g6 as indicated. '

| 0B op OF OH oK oM
Full live load | —223.2 | —209.9 | —198.6 | —189.7 | —183.5 | —180.4
Live load — —223.2 | —213.8 | —209.9 | —208.6 | —200.3 | —180.4
Live load + o +39 | +11.3| +189| +168- o
Dead load —7440 | —699.7 | —662.0 | —632.3 | —611.7 | —601.3
Maximum —967.2 | —913.5 | —871.9 | —840.9 | —812.0 | —781.7
Minimum —744.0 | —695.8 | —650.7 | —613.4 | —584.9 | —601.3

The stresses in the verticals are given in the following table :

AB cD EF GH K LM NN’

Full live load |—12.0| —24.0| —24.0| ~—24.0| —24.0| —24.0| —24.0

Live load— |—51.3| —56.5| —47.2| —38.8| —33.8| —43.9| —24.0
Live load+ |+39.3| +32.5| +23.2| +14.8| +9.8| +19.9 o

Dead lpad —40.0| —80.0| —80.0| —80.0| —80.0| —80.0| —80.0
Maximum —91.3 |—136.5 |—127.2 |—118.8 | —113.8 | —123.9 | —104.0
Minimum —o0.7| —47.5| —56.8| —65.2| —70.2| —60.1 | —80.0

The maximum and minimum stresses in the upper chord,
beginning at the end, are: + 17.9, + 38.3, + 58.5, + 70.0 and
+ 58.4 kips; and those in the diagonals, beginning at the left,
are: +43.4, +38.2, +32.6, + 28.5, + 32.0 and + 65.5 kips.

On comparing these results with the computed values, the
lever arms being expressed to the nearest hundredth of a foot,
the greatest difference in the maximum stresses of any lower
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chord member was found to be o.1 kip, in the minimum o.5 kip,
and in any vertical 0.8 kip, the differences with but few excep-
tions not exceeding 0.2 kip. Although these differences are
practically insignificant they might have been reduced if a larger
scale than 1 kip to the inch had been used for the original of
Fig. 95. The scale employed was smaller than should be used
in practice.

The design of this arch, after making due provision for the
reversal of stresses in the upper chord and diagonals, will show
that about one-half of the material in the truss is distributed in
the lower chord. It will also be noticed on examining the
stresses that a number of sections can be made alike, thus
reducing the cost of construction: ‘

Prob. 65. Refer to Engineering News, Oct. 25, 1894, for the
form and dimensions of the three-hinged arch of the Brooklyn-
Brighton Viaduct, and find the stresses in all the members of
the truss for a live load of 2 kips per linear foot.

ART. 67. PosiTioN oF WHEEL LoaDs FOR CHORDS.

Let it be required to determine the position of a locomotive
and train which shall cause the live load stress in any chord

N

~ "
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Fig. 97.

member when the positive bending moment is a maximum. Let

S be the stress in the chord member cut by the section indicated

in Fig. 97 and whose center of moments isat 0. Using the same
¢ N -
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general notation as in Art. 49 of Part. II, W is the weight of the
locomotive and train, and g the distance of its center of gravity
from the right support &; P the part of the load which is on
the left of the center hinge ¢, and g'" the distance of its center of
gravity from c.

Since has the same value as if the arch were a simple
truss (Art. 60),

Taking moments about the center hinge,
} i — Hk— Pg" =o.
Substituting the value of 7 and redycing,
v iv

Remembering that no load can be on the left of the center of
moments, as shown in Art. 63, the equation for the bending
moment at o may now be written,

M=+ V' —HFE.
Substituting the values of 7] and A, and reducing,

J lz’) ”
=L — =) Wg + = Prg'
=G5 We+ 57

If the train advances a distance 4z, both ¢ and g'" receive an
increment equal to &z, and the bending moment receives an in-
crement of ,
I ) &
=(>——= —Pvdx.
aM ( o= wax + £ |
Placing the derivative equal to zero gi\}es the condition which
makes M a maximum, which is

v (L_#
i _(2 lz’l)W
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Let this be transformed into the following:

w (L Al

e O L

On referring to Fig. 97 it is seen that the coefficient of W is
the horizontal distance dr, and on account of similar triangles,
this distance is to the span / as the distance ec = /" is to f6 =/,
Substituting the latter ratio for the former, there follows,

="

4
This formula is similar in form to that deduced in Art. 49,

Part II, for the maximum stress in the web members of simple
trusses with broken chords, and is therefore applied in the same
manner. To satisfy this criterion for loading a wheel must
always be placed at the center hinge, and while generally the
first wheel is at the right of 7, it may sometimes happen that
the condition is satisfied when it is a little to the left of 7.

If it be desired to determine the position of the point of
division by computation it may be done by means of a formula
deduced as follows: The equations of the straight lines @07 and

bct are respectively,

_hl . _ —%
Y= and y=24% 7

» being the ordinate corresponding to the variable abscissa z.
At the point of intersection 7, the two ordinates are equal, and
on equating these values and reducing,
L
Ao/

PV
For example, let the dimensions of Fig. 97 be the same as those
of Fig. 91, then the value of s indicated in the diagram is

180

27 180
2x45 36

g =

8=
1

= 72 feet.
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The load must therefore be so placed that (9o-72)/(180-72)
or one-sixth of the whole load on the truss is on the left of the
center hinge. Any portion of the weight of the wheel placed

at the hinge may be regarded as being either on the left or on-

the right of the hinge.

The maximum negative moment at ¢ is produced when the
live load comes on the bridge from the left. On account of the
arrangement of live load diagrams it is more convenient to find

Fig. ¢8.

the maximum negative moment at the corresponding center of
moments in the right half of the arch as indicated in Fig. 98.
The reactions are

Wg

- -
M= and A=y

and if g7 is the distance of the center of gravity of the load P
from the vertical through the center of momentg, the bending
moment is
M=(£—!i) Wg — Pg”.
! 2h
When the load advances 4z, both g and g receive the incre-
ment dx, and M the increment

dM=(£' _ ﬁ) Wdr — P'dr.
! 2k
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Placing the derivative equal to zero, the condition is found
which makes A a maximum,

W
il _(1 211) w.
This may be written in the following form:
2k _
: 4
Pr=—m—W

in which the numerator of the fraction equals the vertical inter-
cept on at the center of moments between the line 4oz and the
line ac7 produced. From similar triangles, the

intercept on =24 il

_ Zq
Substituting this value, the above equation reduces to its final
form Pl ‘
Pr=—Ww. .
4

This formula is similar to the one for maximum positive
moment in the left half of the truss, the center of moments
in this case taking the place in a measure of the center hinge
in the previous one. To satisfy the criterion a wheel must
always be placed over the center of moments and in general
the first wheel is to the right of 7 although it may sometimes
advance a little beyond 2.

The two formulas deduced in this article for the position
of the wheel loads apply also to the lower chord whether the
bracing contains verticals or not. In case the bracing is all
inclined, a new formula has to be deduced for the upper chord
which contains the loads @ like the corresponding formulas
in Art. 61 of Part I, or in Art. 56 of Part II, deduced for simple
trusses. Such a formula will also be affected by the character
of the bracing at the center hinge, the simpler form being
obtained either when a vertical is above the hinge, or the hinge

-
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itself is in the upper or loaded chord. As the use of the load
line was fully illustrated in several examples in Chaps. IV, V
and VI of Part II, it appears unnecessary to add another
example. ’

Prob. 66. Find the positions of WADDELL's compromise
standard, Class U, for the chords in Fig. g1. This load has
the spacing given in Fig. 24, Art. 17, the weight on the pilot
wheel being 20 000, on each driver 40 000, and on each tender
wheel 23 000, while the uniform train load is 4 000 pounds per
linear foot.

ART. 68. PositioN or WHEEL Loaps ForR WEB MEMBERS.

There are two points of division where a concentrated load
may be placed without producing any stress in the diagonal .S

in Fig. 99, as explained in Art. 63, one of these being at ¢ and
the other in the vertical through z. The greatest compression
is produced in the diagonal when one train, advancing from the
right, covers the truss on the right of Z, and another train,
advancing from the left, covers the truss on the left of . Let
the position of each of these trains be considered separately.

In Fig. 99 only the first of these trains is shown on the truss;
and it is required to find its position so as to make the moment
of all the external forces on the left of the section, with respect
to the center of moments o0, a maximum. The center o is at the
intersection of the chords cut by the section indicated. On
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comparing the diagram with Fig. 97 it is observed that the
conditions are similar, and hence by the same reasoning the
following formula is deduced:
1
r=Cw
%
This condition may be satisfied by placing a wheel directly over
the center hinge and the pilot wheel near the vertical through 7.

To find the required position of the second train let the truss
be reversed as in Fig. 100 in order to bring the train on from

Fig. 100.

the right. By the same reasoning as in Art. 48 of Part II, the
arrow is located and gives the position of a concentrated load
which causes no stress in the diagonal S. This point is the
same as ¢ in Fig. 99. The right half of the arch is subject to
two inclined reactions whose lines of action are act and &z
respectively. The sides sz and v« of the equilibrium polygon
suv pass through the panel points of the loaded chord which
are next to the given section, and its vertices s, # and « are on
the lines of action of the reactions and of the concentrated load.
As the three points 7, # and v depend upon the position of the
concentrated load, its position must be found by trial.

Now let the locomotive and train cover the truss on the right
of the arrow, their position being required which shall make the
moment of the forces on the left of the section, with respect to
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the center o, 2 maximum. The wheels are omitted in Fig. 100
to avoid confusion of lines. Let 2" be the load on the panel,
and g'" the distance of its center of gravity from the right end
of the panel, ¥ the total load and g the distance of its center
of gravity from the right support. Proceeding in the same
manner as before,

V—”g H_lll _ Ve
=77 2 /* 2k

' _(L_7 2 pin i
and . M-(z 2}l>Wg+ plrig!.

When the load advances dr both g and g’ receive the incre-
ment dz, and M the increment

] !
M = (5' _ _”-)de + 2 gy,
I 22 ?

On equating the derivative to zero, there is found

" Il, / !
=1 )"

On finding successively the values of y, #, #, 2, m, /', ' and
/t; (two values being obtained for z and also for &’) in terms of
the quantities which constitute the coefficient of W in the last
-equation, and combining these values as indicated by their
relation in Fig. 100 there may be obtained after rather tedious
reductions the equation,

ﬁ 11’ ll ll "
LG 7)- T
Substituting this in the preceding equation the required criterion

is found,
llll
Pr=t_w
l
which is applied exactly like that in Art. 49 of Part II, or like
the previous ones deduced in Arts. 67 and 68.
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The greatest tension in the diagonal is caused when the wheel
loads cover only the portion between ¢ and 7 in Fig. 101, and it
may be shown that the bending moment is ’ '

l

while the loads must be so placed as to satisfy the condition
expressed by the formula

(] ! n
m="t W:g—z”_/ W(l—-g)_l_;'g. pris
(4

Al
o
In applying this formula it may frequently be found that no
locomotive specified will cover the distance from ¢ to 7 without

Pvli

10

PR

one or more wheels extending beyond these limits, but as there
may be shorter locomotives in actual use which will produce a
greater tension in the diagonal than the larger locomotive speci-
fied, it will be on the safe side to consider only those wheels of
the specified locomotive which lie between the given limits. A
driver is always placed at the panel point on the right of the
section, and as much of the load as possible between ¢ and ¢,
while at the same time the preceding criterion is satisfied.

When, as stated in Art. 63, the point 7 falls below the center
hinge it is no longer a point of division, and in that case-the
load must extend from e to the right support for the greatest
tension in S. The criterion for position will not be of as sim-
ple a form as those already deduced, but if the pilot wheel is
placed near ¢ (usually on the right of it) and a driver at the
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panel point on the right of the section the position will gen-
erally be found correct. If there is any doubt between two
positions the stresses due to both must be found and compared.

While the above investigation relating to web stresses has
been made by using a diagonal, the same criteria apply also to
the verticals, after the corresponding points of division ¢ (Figs.
99 and 101) are located. It will be observed that all positions
of the wheel loads for both chord and web members with but
very few exceptions may be found graphically by means of the
simple operation of stretching a thread when a tracing of the
truss diagram is placed on the sheet containing the load line.

Prob.,67. On a truss diagram drawn to a scale of 10 feet to
an inch, find the position of the point of division ¢ for each
diagonal and on a second diagram determine the correspond-
ing points of division for the verticals.

Prob. 68. Find the positions of the given load for the web
members of the arch in Prob. 66.

ART. 69. STRESSES DUE TO WHEEL LoADs.

The equations for the bending moment in Art. 67 include
the expressions Wg, P"g', and P7¢”, which may be read directly
from the equilibrium polygon or moment diagram as indicated
in Arts. 47 and 51, Part II. If the coefficients //// and #'/2/
are simple ratios their product with the quantities read from
the moment diagram is better obtained analytically, but if not,
it may save labor to use graphical arithmetic (Art. 14 of
Part II), the necessary construction being made directly on the
_ tracing paper containing the truss diagram. Since the loading
is different for the two chords whose centers of moments lie in
the same vertical, it is preferable to divide the bending moment
for each chord member directly by its lever arm.

When the centers of moments of the web members lie within
the limits of a drawing of convenient size, as is generally the
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case with spandrel-braced arches, it may be desirable to find
the lever arms and divide the corresponding bending moments
by them. Where the centers of moments are not conveniently
located it is better to adopt the method developed in Art. 50 of
Part II, and illustrated by examples in Arts. 52 and §3 of
Part I1. Its application to arches is exactly the same as to sim-
ple trusses after the moments are obtained for the panel points
at the extremities of each diagonal. In view of the examples
referred to the student should have no difficulty in writing an
equation for the bending moment at any panel point of the
arch, and in arranging its terms so as to facilitate its use.

When the load occupies a position like that in Fig. 101 it is
required to find the moments at panel points, at the center
hinge, or at the right support, when some wheel loads are
considered not to be on the bridge. The properties of the
moment diagram as indicated in Art. 42 of Part II, are so
simple that any of these moments may be quickly found by
producing one or more sides of the polygon to intercept the
required value on the ordinate through the center of moments.

As examples of simple trusses were worked out in detail in
Chaps. IV, V, and VI of Part II, illustrating the use of the
moment diagram and the construction of the force polygons
for the resolution of the shear no additional example will be
given.

Prob. 69. Find the greatest tension and compression in the
chords and diagonal of the fourth panel of the arch in Probs. 66
and 68, and also in the vertical on each side of this panel.

ART. 70. Excess Loaps.

If one excess panel load be employed in combination with
given live panel loads, its position is the same as that indicated
in Arts. 67 and 68 as the proper one for a driver of the typical
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consolidation locomotive in order that the respective criteria
may be satisfied. These positions are the following: Above
the hinge ¢ in Fig. 97; above the center of moments o in
Fig. 98; above the hinge ¢ in Fig. g9; and at the right end
of the panel cut by the section in Figs. 100 and 101.

When two excess panel loads are specified the first one is,
placed in the positions just stated, and the second one on the
right of the first, provided the live load advances on the truss
from the right as shown in Figs. 97 to 101 inclusive. As
Figs. 98 and 100, however, give the loading for members in the
right half of the arch, the loading for the corresponding mem-
bers in the left half will evidently be symmetrical with that
given in each diagram.

Prob. 70. Find the stresses due to an excess load of 12 kips
in the members OH, A/, GH, and H/ in the arch in Fig. 93,
Art. 66.

. ART. 71. WIND STRESSES.

The upper lateral system of a three-hinged arch whose center
hinge is in the lower chord, as in Fig. 102, is not continuous on
account of the provision made near ' for motion due to deflec-
tion under live load and.changes in temperature. The lower
lateral system is continuous in this case. Sway bracing is pro-
vided between the verticals of the opposite trusses.

Let it be required to find the stresses in the lower lateral
system and in the arch in Fig. 102 due to the wind pressure
on both arches of the bridge, which are 20 feet apart, under
the assumption that the pressure applied at the panel points
of the upper chord is transmitted by the sway bracing to the
lower chord and thence by the lower lateral system to the abut-
ments. The area presented by each arch to the wind increases
from the middle toward the ends, and strictly the wind panel
loads should increase in the same manner. For the sake of
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simplicity, however, in the following computations let the wind
load be taken at the usual value of 150 pounds per linear foot
for each lateral system, and equally divided between the panel
points of each chord. As the panels are 15 feet long the panel
load for each chord of both systems is 75 x 15/1000 = 1.12§
kips. Let the panel points of the leeward truss be designated
by the primed or accented letters corresponding to those in
Fig. 102.

The panel loads at C and C’ produce an overturning moment
with respect to ¢ or ¢/, through the sway bracing, equal to
(1.125 + 1.125)8 = 18 kip-feet, which causes two equal vertical
reactions at the latter points, downward at ¢ and upward at ¢'.
The trusses being 20 feet apart, these reactions are 18/20 =
0.9 kip. The sum of the horizontal reactions at ¢ and ¢/ must
also equal the sum of the panel loads at C and (', and these
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may be assumed to be equal, provided the sway bracing is stiff.
If its diagonals would take only tension, the entire horizontal
reaction would be applied at the windward point ¢. Because of
the action of the sway bracing, the given horizontal loads at C
and C' may therefore be replaced by equal loads at ¢ and ¢/,
together with vertical loads of 0.9 kip applied at C and (',
acting upward at C and downward at ¢'. The total horizontal
wind load at ¢ is 1.125 + 1.125 = 2.25 kips, while that at ¢/ and
at all other panel points of the lower lateral system has the
same value.

The stresses in the lower lateral system alone may hence be
found by developing it into a horizontal plane, and treating it as -
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a simple truss with parallel chords. Its span equals the actual
length of the lower chord of the arch, and a load of 2.25 kips
is applied at every panel point, except at the ends.

The equivalent vertical loads due to the overturning moments
transmitted by the sway bracing are found to be the following :
At C and (', 0.9; at H and H', 1.01; at G and G, 1.35; at
Fand F', 1.91; at £ and £', 2.70; at D and D', 3.71; at 4
and A', 2.45 kips. In addition to these loads which cause

stresses in the arches there must be found the equivalent verti--

cal panel loads due to the overturning moments of the hori-
zontal loads of 2.25 kips applied at both windward and leeward
panel points of the lower lateral system.

Let the two panels /4c7i'c’/ in the middle of the lower lateral
system be considered separately and as supported at 4, 4/, 7 and
#. The horizontal loads of 2.25 kips at ¢ and ¢/ will cause an
overturning moment for this portion of the system equal to
(2.25 + 2.25)(9 — 8)= 4.5 kip-feet. This must equal the sum of
the moments of the equal and opposite vertical reactions at /%
and %' and at 7 and 7/, the lever arm of each couple being
20 feet. The same reactions would be caused by vertical loads
of 4.5/20=0.23 kip at ¢ and ¢, acting upward at ¢ and down-
ward at /. These two panels of laterals also transfer one half
of the horizontal loads at ¢ and ¢/ to % and 4’ and the other
half to 7 and #. Hence so far as the arches are concerned
the same stresses will be produced if the horizontal loads of
2.25 kips at c and ¢/ are replaced by horizontal loads of 1.125 kips
applied at %, #/, 7 and 7/, respectively, together with an upward
load of 0.23 kip at ¢ and an equal downward load at ¢

The four panels extending from gg’ to 4%’ are next to be con-
sidered as supported at g, ¢/, # and £, and subject to the hori-
zontal wind loads of 2.25 + 1.125 = 3.375 kips at each of the
points 4, /', ¢’ and 7. As the vertical loads referred to in the
preceding paragraph do not cause any overturning moment

A .
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they need not to be taken into account until later. The over-
turning moment for the left half only of this portion of the
lateral system is (3.375 + 3.375)(12 — 9) = 20.25 kip-feet. These
loads may therefore be replaced by horizontal loads of 3.375
kips applied at g and ¢/, together with a vertical upward load
of 20.25/20=1.01 kips at 4, and an equal downward load at
#'. The same change in loading is made for the right half.
Similarly the horizontal loads of 3.375 + 2.25 = 5.625 kips at g
and ¢’ may be replaced by equal horizontal loads at f and f’
and by an upward load at g of (5.625 + 5.625)(17 — 12)/20 =
2.81 kips, and an equal downward one at ¢’. The equivalent
vertical loads at  and f’ are 5.51; at ¢ and ¢', 9.11; at & and
d', 13.61 Kkips. 4
When the truss in Fig. 102 is changed to the leeward one its.
stresses due to the total overturning moment of the wind pres-
sure on the arches are equal to the stresses produced by all of
the above equivalent vertical loads, acting downward. Since
these stresses always occur in conjunction with the dead load
stresses, they have the same magnitude in the windward as in
the leeward truss while their signs are reversed. For con-
venience all the equivalent vertical loads may be applied at the
upper panel points, the stresses in the verticals being corrected
afterward by adding algebraically the lower panel loads.

For railroad bridges the equivalent vertical loads due to the
pressure of the wind on the train are found in the same manner
as for that on the truss. They are applied at the panel points
of the upper chord and treated as a moving load. Under the
assumption that the wind pressure on the train is transferred to
the lower chord by the sway bracing, the lever arm of any
horizontal wind panel load equals the distance of the center of
pressure above the corresponding lower panel point. If, on the
other hand, the pressure be regarded as transferred by the upper
lateral system to the points 4 and 4’ and to C and C, the lever
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arm is the distance of the center of pressure above the plane of
the lateral system. The actual stresses probably lie between
the limiting values thus found.

Prob. 71. Find the horizontal wind panel loads to be used in
determining the stresses in the lower lateral system, and the
equivalent vertical loads on the arch in Fig. 102, under the
assumption that each half of the upper lateral system transfers
the wind loads to its extremities.

ART. 72. ARrcH RiB wiTH SoLiD WEB.

One-half of a three-hinged arch with a solid web like that
of a plate girder is typified in Fig. 103. The floor system is
represented by the horizontal line while the verticals indicate
the struts which support the floor and transmit the loads to the
arch rib. If the outer parallel curves pass through the centers
of gravity of the upper and >

r__a 3 4 3
lower flanges of the arch ' E I =
the maximum and minimum - {omy ;g.: ‘
flange stresses at » may be G R\ ;
obtained by finding the maxi- # &2 - H
mum and minimum bending ‘,{ v >

moments with reference to Fig. 103.

the center s, directly opposite #, provided the usual specifica-
tion is made that the flanges shall take the entire bending
moment while the web takes all the shear. The position of the
live load and the values of the reactions and bending moments
may be found in exactly the same manner as described in
Arts. 63 and 64.

Sometimes the bending moment may be found more readily
by observing the relation which it bears to its value when the
arch is replaced by a simple truss. * Since it was shown in
Art. 60 that for vertical loads the vertical components 7] and
V, of the reactions of the arch are equal to those for a simple
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truss of the same span it is clear that the difference in the
bending moment in the two cases is due simpl;' to the moment
of H. 1If, for example, it be required to find the bending
moment M with reference to the center 7 in Fig. 103 whose
height is /4’ above the horizontal through the hinges a and 5,
and if M’ denotes the corresponding bending moment for the
simple truss, then :
M=M - HFK.

Similarly for the center hinge ¢ the bending moment is
M. =M'.— Hk,
in which 7', denotes the bending moment at ¢ when the arch

is replaced by a simple truss. But because the moment /, at
the hinge is zero, # = M’ /%, whence

M= "y
PR

In the application of this formula care must be exercised in
certain cases in determining whether a given load is to be taken
on one or the other side of the inclined section. For example,
if the line m#, in Fig. 103, is drawn normal to the axis of the
arch through its intersection by the vertical strut at 2, the load
transmitted by the strut should be regarded on the right of the
section for the flange stress at s, and on the left of the sec-
tion for the flange stress at », although the corresponding
centers of moments are on opposite sides of the strut. If the
centers of moments be taken in the same vertical section as
indicated at the other struts in the diagram the load on the
strut at each section does not need to be considered.

In order to find the shear in the section sz which is normal
to the axis of the arch rib at that point, and makes an angle of
6 with the vertical, let all the external forces on the left of the
section be projected on the section. If Vj and /A are the verti-
cal and horizontal components of the reaction at a, and 2P the
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loads on the left of the section the shear in the given sec-

tion is :
V,=(Vy— ZP)cos § — Hsin 6.

Since the expression V; — 2P equals the vertical shear at the

section when the entire arch is treated as a simple beam, it may

be denoted by ¥’ and then the equation becomes

V,= V'cos @ — Hsiné.

The position of the live load which makes V, a maximum or
a minimum may be found in the manner described in Art. 63
provided the shear be regarded as the stress in a web member
whose center of moments is at infinity on the tangent to the
axis of the arch rib at the given section. The shear due to the
dead load may be most conveniently found by drawing the
special equilibrium polygon which passes through the three
hinges as shown in Fig. 88, Art. 61, and then projecting on the
section the ray which is parallel to the side of the equilibrium
polygon which is cut by the section. If the axis of the rib be
parabolic and the dead panel loads are all equal the vertices of
the equilibrium polygon will coincide with the points where the
posts intersect the axis.

Prob. 72. The arch rib in Fig. 103 has a span of 84’ 4'/, and
arise of 14’ 3'". Its axis is circular. In sections at one-third
and two-thirds of the distance from the springing to the crown
the effective depths of the rib are 20 and 184 inches respectively.
Find the maximum and minimum flange stresses and shears in
these sections due to a live load of 12.3 kips per panel. )

ART. 73. DEFLECTION.

The skeleton truss diagram in Fig. 104 represents the west-
ern arch of the Fairmount Park bridge at Philadelphia. The
roadway is on a grade of 1.2 per cent and the panel points of
the lower chord lie on a parabola whose vertex is at the center
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hinge ¢. The tangent to the parabola at ¢ is horizontal:
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For

the purpose of illustrating the method, the deflection of the

A D E F G H C B
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. Fig. 104.

Fig. 105.

above three-hinged arch, due to a live panel load of 40670
pounds, will be found. The value of A for a full live load is
7.5 X 40 670 = 305 000 pounds, and by means of a diagram simi-
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lar to a portion of Fig. 96, the stresses in the lower chord
are found, and inserted in the following table. There are no
stresses in any other members except the verticals, the com-
pression in the end verticals being a half panel load and in the
others a full panel load.

The areas of cross-section of any two verticals, occupying
symmetrical positions in the truss, are the same, and the lengths
of the verticals in the right half of the arch are respectively
87.7, 130.1, 199.2, 294.9, 417.3 and 566.4 inches. The corre-
sponding values of the deformation A are 0.0103, 0.0152, 0.0233,
0.0328, 0.0353 and 0.0207 inches. The lower chord has the
same cross-section throughout. The coefficient of elasticity is
taken at 29 000 000 pounds per square inch, the material being
medium steel. The principal dimensions of the arch and the
lengths and section areas of the members were furnished by
Jonn SterLING DEaNs, Chief Engineer of the Phoenix Bridge
Company.

MEMBER. STRESS. I LeNGTH. | CROSS-SECTION. : A MEMBER.

Pounds. Inches. Square Inches. Inches. Number.
ad | - 378000 247.6 47.6 — 0.0678 24
de — 355 000 233.0 47.6 — 0.0599 20
ef — 336 000 220.5 47.6 — 0.0537 16
Iz — 321 000 210.7 47.6 — 0.0490 12
gk — 311 000 203.8 47.6 — 0.0459 8
ke — 306 000 200.4 | 476 — 0.0444 4
Aa — 20 340 537.6 19.2 — 0.0196 25
Dd — 40670 3933 16.6 — 0.0332 21
Ee — 40 670 275.7 12.6 — 0.0307 17
Ff — 40670 184.9 12.0 — 0.0216 13
Gg — 40 670 120.5 12.0 — 0.0141 9
Hk — 40670 82.9 12.0 — 0.0097 5
Ce — 40670 | 720 | 12.0 — 0.0084 1

The displacement diagram in Fig. 105 is constructed by the
method given in Arts. 66 and 67 of Part II, by assuming C and
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the direction of Cc as fixed. The values of A are laid off on
the diagram in the order indicated by the numerals on the truss
diagram. Fig. 106 is an enlargement of that part of Fig. 105
which is drawn first. The value of A, is laid off upward from
C'to . 1In locating A’ the values of A, and A4 are both zero.
The perpendicular drawn at the end of A, and whose direction
is perpendicular to the chord member C/ almost coincides with
the vertical C'¢’; practically it does coincide because the line is
so short. The perpendicular laid off at the end of A4 is a line
through ¢ perpendicular to the diagor{al ¢H, -and these two
perpendiculars intersect at the point A’ which practically coin-
cides with ¢/. The rest of the construction is sufficiently indi-
cated in the diagram. The right half of the displacement
diagram belongs to the left half of the arch. In the same
manner the left half of the displacement diagram is drawn, the
last point to be located being &'.

Since the hinges a and &4 are fixed in position, &'’ and &'
coincide with &' and &' respectively, and as the hinge ¢ moves in
two arcs whose centers are at ¢ and & on account of the rotation
of the segments about @ and 4, the lines @'’¢”” and #''c'’ are drawn
perpendicular to the radii ac and éc. Their intersection locates
¢'" which is found to be just a little on the right of the vertical
through ¢/. If the truss were entirely symmetrical the resultant
displacement of the hinge ¢ would be vertical, and then only
one-half of the displacement diagram would be required.

The diagram a'’ A" C"'¢"", similar to the left half of the truss
diagram is next constructed. That for the other half is omitted
in order to avoid confusion. The resultant displacement of any
panel point as C is indicated by the line from C' to C’ both in
magnitude and direction. The horizontal component of the dis-
placement of 4 is o.110 inch.

The deflections of the upper panel points, expressed in inches,
are as follows :
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c H G oF E D
Left half ofarch . . 1.183 0.825 0.572 0.388 0.241 0.120
Right half of arch . 0.837 0.589  0.405 0.257 0.130
Those of the lower panel points are :

¢ A £ s P d
Left half of arch . . 1.175 0.815 0.558 0.366 0.210 0.087
Right half of arch . 0.827 0.574  0.382 0.224  0.094

The deflections of A4 and B are 0.020 and 0.021 inches.

Fig. 107 gives the displacement diagram due to a change in
temperature. As the changes in length of all the members are
directly proportional to their lengths for a given change in
temperature, the portion ¢/C'A'a’ of the diagram is similar to
the truss diagram. It was constructed by laying off /a’ equal
to the computed shortening of the chord ac (Fig. 104) for a fall
in temperature of 75 degrees below the standard of 50 degrees
Fahrenheit. The length of acis 107.703 feet, and the coefficient
of expansion of steel is 0.0000065, making A = 0.630 inches.
The hinge ¢ deflects in a vertical line and therefore ¢’ is located
at the intersection of the vertical ¢'c’’ and the line a''¢" which is
perpendicular to the radius 2c. The measurement of the original
diagram gave the deflection of ¢ as 1.696, and that of C as 1.731
inches. The shortening of Aa is 0.262 and of B is 0.276
inches. The horizontal component of the displacement of A
is 0.655 inches. )

At the maximum temperature of 125° F. and with no live load
on the bridge the center hinge ¢ is 1.696 inches above its normal
position at the standard temperature; while at the minimum
temperature of — 25° F. and with a full live load on the bridge,
the center hinge is 1.696 + 1.175 = 2.871 inches below the
normal position, thus giving an extreme range of deflection of
4.567 inches. The panel point C has a range of 4.645 inches,
which exceeds the average of the ranges of 4 and B by 4.396
inches. The range of the horizontal movement of A4 is
2 X 0.655 + 0.110 = 1.42 inches.



204 THREE-HINGED ARCHES. CHar. V.

Since the special’ equilibrium polygon for any given loading
must always pass through the three hinges, the form of the
polygon is affected by the rise or fall of the central hinge due
to temperature changes, and this modifies the value of A, and
consequently the stresses in all the members of the arch. As
the change in elevation of the center hinge is relatively small
for the usual ratios of the rise to span, the corresponding effect
on the stresses is in most cases so slight that it is customary not
to consider it.

Prob. 73. Find the deflection of the center hinge due to the
live load, provided the rise of the arch in Fig. 104 is increased
from 40 to 47.5 feet, the depth at the crown, the grade of the
roadway and the cross-section of all its members remaining the
same.

ART. 74. INFLUENCE LINEs.

As it is intended to use influence lines to determine the load-
ing for two-hinged arches and the resulting stresses, it seems
desirable to present their application also to three-hinged arches
in order that the student may be able to compare their use with
the methods already given, and to receive the aid of the latter
in interpreting the significance of the various forms of the influ-
ence diagrams, as well as to consider their relative advantages.
It may be added that influence lines were not employed in
Part II because it is believed that for simple trusses their use
in the determination of the position of the live load is not as
convenient as that of the methods given.

An influence line of a truss is one which shows the variation
of a stress, moment, shear, reaction, or any other function of a
truss, or of any of its members, when a given load moves across
the structure. Influence lines are sometimes employed to find
‘the position which any specified loading must occupy in order
to produce the maximum or minimum value of the stress or
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other function. They may also be used to find this value. The
load usually employed for this purpose is unity. The ordinate
to the influence line at any point represents the value of the
function when the load unity is at the position indicated by the
point, and for any other load occupying the same position,
the value of the ordinate is multiplied by the given load.
Let it be required to construct the influence line for the stress
S in the diagonal of Fig. 108 which is cut by the given section.
If aload P be placed on the left half of the arch the reactions
of the supports will be R, and R, (Art. 60). Since there is no
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Fig. 109

load on the right of the center hinge, the reaction at ¢ against
the left half of the arch is equal to R,. Now let R, be resolved
into the components 7, and 7, the former being vertical and
the latter directed toward the center hinge ¢. Similarly, R, is
resolved into the vertical I/, and the component 7" which is
directed toward the hinge 2. The resolution is made in the
force diagram, by drawing the ray 7" parallel to the line ac
Since the rays are respectively parallel to the three sides of the
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equilibrium triangle whose closing side is ac, the vertical com-
ponents ¥, and V, are equal to the vertical reactions at 2 and ¢
of the left half of the arch when regarded as a simple truss sub-
ject to the load 2. The component 7" is equal to the reaction
at 2 when a load equal in magnitude to 7, is placed on the arch
at the center. The stress S is therefore equal to the sum of the
stresses obtained under both of the preceding conditions, and
the influence line for the stress S is equal to the combined influ-
ence lines for the same conditions.

It is first required then to construct the influence line for
a load unity traversing the left half of the arch when acting
as a simple truss with vertical reactions at 2 and ¢. Let S, be
the stress in the given diagonal when a load is placed at the
panel point 5 that is of such a magnitude as to produce a verti-
cal reaction at @ equal to unity, and let ', be the stress when a
load is placed at 1, so as to produce a vertical reaction at ¢
equal to unity. When a load unity is placed at a distance 2’ from
the right support ¢, the left reaction is V, = x'/}/, } / being the
span. If the load is on the right of the panel cut by the section
there is only the external force V, on the left, and hence the

!
stress in the diagonal is V, x S, = 2—;— S, =. On the horizon-

" tal axis a'c’ in Fig. 109 let the ordinate S, be erected at a’ and
its extremity joined with ¢/, then the value of the ordinate y

will satisfy the preceding equation and ¢'c’ will be the influence
line on the right of the panel point e. Similarly &'@’ is found
to be the influence line on the left of panel point &. S, is laid
off upward or positive as it is tension (4 ), while S, is com-
pression (—) and is hence laid off downward.

In order to determine the form of the line &'¢/, let the load P
which rests on the stringer @e be replaced by the panel loads 7
and P, If the load is a distance g from the panel point ¢ (=4)
and the panel length is p, Py = Pg/p, and P, = P(p — 9)/¢.
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Since the influence of the load P equals the sum of the influ-
ence of its components P and 2,

Py = Pyyy + Py,
in which y, y5 and y, are the ordinates directly below 2, Pg and
P, respectively. By substituting the values of Py and P, and
making 2 equal to unity, there is obtained the equation,

y= % Js + ﬁ_])_g'y“
which being of the first degree proves that the line 4'¢ in
Fig. 109 is a straight line.

Since the component V, of the left reaction due to a load on
. the right half of the arch equals zero, the line of influence for
that portion coincides with the axis ¢/4’. The complete line of
influence is therefore a'd'e/c'¥'.

The second line of influence required is that due to the com-
ponent of the load unity whose magnitude equals 7, and which
is applied at the center. The maximum ordinate is at ¢/ in
Fig. 109, the load unity being then at the crown, and is equal
to the stress in the diagonal for this loading. It is designated
by S, and its value is obtained by means of a stress diagram.
Since V, varies directly as the distance of the load from the
nearest abutment the stress in the diagonal must vary in the
same manner and hence the influence line for the entire span /
is the line @''¢''4'’. This may also be seen by observing that
the horizontal component of 7 in Fig. 108 is A, which accord-
ing to Art. 60 varies as the ordinates of a triangle a''c''4'".

In order that the two influence lines may be properly com-
bined let the points &/, ¢/ and &' be made to coincide with '/, ¢’
and 4"/ respectively, thus giving the lowest diagram in Fig. 109
as the final form.

For example, let the influence lines be drawn for the chord
member U, and the diagonals D, and D; of the arch whose
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‘dimensions and loading were given in Art. 64. The stress
diagram for a vertical reaction of unity at  is given in Fig. 94,
Art. 66; that for a vertical reaction of unity at ¢ is given in
Fig. 111, while Fig. 112 is that for a load unity applied at the

Fig. 111, Fig. 110.

center. These+diagrams give the following stresses for the
above members:

S, S S
U, — 5.00 — 2.50 +0.83
D, + 3.02 —o0.19 —0.22
Dy +3.88 —0.98 +0.16

These stresses are laid off as ordinates as shown in Fig. 113.
It will be noted that they are laid off as positive and negative
in accordance with their signs of tension and compression, and
that the ordinate S, is laid off so as to be added algebraically
to S, The construction may be tested by observing the follow-
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ing checks: The lines which are drawn to the extremities of
the ordinates S, and .S, must intersect each other in the vertical
drawn through the center of moments of the given member.
The points where the line joining the extremities of the ordi-
nates .S, and S, crosses the axis must lie in the same vertical as

----- ‘!ni-.d‘ \\\ c"@

.........

the points of division 7 and ¢ found in Art. 63. Compare
Fig. 113 with Figs. 89 and go. The zero points &', and &’ in
Fig. 113 lie in the same verticals as the points of division in the
fourth and fifth panels found by means of equilibrium polygons

(triangles) as shown in Fig. 100, Art. 68. '

The influence line for U, shows that if any concentrated load
occupies a position to the left of &, it causes compression, while
if it is on the right of &, it causes tension in U,. To obtain the
greatest compression in U, hence requires the panel points o
to 5.inclusive to be loaded, while the greatest tension is due to
the panel Toads 6 to 12 inclusive. If it be desired to use the
influence lines to determine the magnitude of the greatest
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compression in U/, it may be done by measuring the ordinates
under the panel points o to 5, and multiplying the sum, which
is found to be — 2.92, by thelive panel load of 24 kips, giving
a stress of — 70.1 kips. If the diagram is carefully drawn the
sum of the positive ordinates indicated by heavy lines will be
equal to the sum of the negative ordinates, thus showing that
under full load there is no stress in U/, The summation of
ordinates is most readily made by means of a pair of dividers.

The influence line for D, shows that the greatest tension is
produced by panel loads 4 and 5 and the greatest compression
by the remaining panel loads. The influence line for D indi-
cates the fact that there is only one point of division for the
loads and that all the panel loads on the right of &', produce
the same kind of stress in D, It shows also that 4, in the
lowest diagram of Fig. 113, is not a real point of division when
the corresponding point 7, on the truss diagram is on the right
of the center hinge.

If a uniform load be employed the greatest tension in U,
may be obtained by multiplying the positive area of the influ-
ence diagram by the load per linear unit. If one foot be taken
as the linear unit the area will be } x 102.9 X 0.83 =45.19.
The uniform load corresponding to the above panel load of 24
kips is 24/15 = 1.6 kips per linear foot. Hence the stress is
45.19 X 1.6 = 72.3 kips. Panel loads are used in preference to
a uniform load.

If a single excess panel load is specified, it must be placed
at the position indicated by the largest ordinate for tension
and compression respectively. If two equal excess panel
loads are employed they should be so placed that the sum of
the corresponding ordinates of the influence line shall be a
maximum. For instance, if the excess loads are two panel
lengths apart, they should be placed at panel points 6 and 8
(Fig. 113) for the greatest tension in U, and at 4 and 2 for
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the greatest compression. For the greatest tension in D, the
excess loads should be placed at 4 and 6, while for the greatest
compression the loads should be put at 6 and 8.

When locomotive wheel loads are specified their position
for the greatest tension in {/, is found by placing one of the
wheels at the apex of the triangle as shown in Fig. 114 so that
the pilot shall be near the point of division d;. The stress due

to each wheel load equals the product of the load and the ordi-
‘nate directly above it, the total stress being the sum of these
products. It is a question whether a greater stress may be
obtained by placing the third wheel at the apex (which indi-
cates the position of the center hinge), although this will place
the pilot wheel a little to the left of &, and the only way to
decide the question is to find the stress due to this position
in the same manner as before -and compare results.

It was proved in this article that the influence line is a
straight line between the verticals which indicate the position
of the floor beams. In case therefore that the bracing is of
such a form that the center of moments for U, and the
center hinge occupy the positions given .
in the upper diagram of Fig. 115, the
influence line for U, must be modified as -
shown in the lower diagram.

Prob. 74. Construct the influence lines
for all the members of the truss in Fig.
91, and notice especially the diagrams for L, Ly and D,
Also compare those for Dy and U

Fig. 11s.
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CHAPTER VI
TWO-HINGED ARCHES.
ART. 75. DESCRIPTIVE NOTES.

It was shown in Art. 73 that changes in temperature cause
the larger part of the deflection of the three-hinged arch.
By making the arch continuous at the crown the deflection is
reduced, since the two halves of the arch are no longer free
to turn at that point. The deformation of the arch due to
changes in temperature is therefore partially prevented and
this causes stresses in its members. Because the two-hinged
arch is a stiffer structure it is better adapted for railroad traffic
than the three-hinged arch, especially for long spans. In one
of the common forms of two-hinged arched- bridges the floor
is supported by vertical posts, united by sway bracing, and rest-
ing upon arch ribs several of which are placed at comparatively
short distances apart and thoroughly braced together by lateral
and sway bracing. The posts are spaced so as to make the
panels of the floor system equal and no diagonal bracing is
placed between those resting on the same rib, but if they need
longitudinal support on account of their length, lines of horizon-
tal struts are extended from post to post until one end reaches
the arch rib where it is securely fastened. An arch rib is a
metallic girder built in the curved form of an arch and gener-
ally having the radial depth uniform throughout. The flanges
are usually formed of angles and plates similar to the plate
girder construction. The flanges are connected either by a
solid web or by diagonal bracing.



ART. 75. DESCRIPTIVE NOTES. 213
L )

The largest arch ribs with solid webs are those of the Wash-
ington bridge over the Harlem river at New York City, com-
pleted in 1889. The clear span is 510 feet and the clear rise
91.8 feet, while the span center to center of end hinges is 508.8
feet and the rise to the axis of the rib 89 feet 9.88 inches. The
ribs are 13 feet deep and the web plate has radial stiffeners.
The pins at the skewbacks are 18 inches in diameter. The
floor system has 34 equal panels. A brief historical sketch
of the bridge with illustrations of the competitive designs sub-
mitted, as well as that finally adopted, may be found in En-
gineering News, Dec. 27, 1890. A.complete description of its
construction, containing numerous views and detail drawings,
is published in a volume entitled ‘ The Washington Bridge,’
by WiLLiam R. Hurtron, the chief engineer.

The two-hinged ribs of the Minneapolis steel arched bridge
have a span of 258 feet, a rise of 26 feet, and a depth of about
5 feet, while those at Lansing, Michigan, have a span of 110
feet, a rise of 13 feet, and a depth of 4 feet. A short illustrated
description of the latter brldge is given in Engineering News,
Nov. 14, 1895.

In the steel arch, which replaced the Nlagara Falls and
Clifton suspension bridge in 1898, the chords of the rxbs are
connected by diagonal bracing. This structure not only has
the largest span of any trussed arch with parallel chords but
that of any kind of arch in the world. The span is 840 feet
center to center of end hinges, and the rise from the level of
the hinges to the center of the trusses at the crown is 150 feet.
The trusses are 26 feet deep. See Railroad Gazette, Feb. 28,
1896. :

The Riverside Cemetery bridge at Cleveland, Ohio, erected in
1896 has an arch span of 142 feet. The rise of the parabolic
arch ribs is 27 feet, their depth being 2 feet at the ends and
5 feet at the crown. The roadway is carried by each rib at
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only three points: at the crown and the haunches. The middle
half has a lattice web, while the ends have solid web plates.

The Garabit viaduct in France contains a crescent-shaped
trussed arch with two hinges, the span being 165 meters, the
mean rise 65 meters, and the depth at the crown 10 meters.
See Engineering News, Aug. 9 and 30, 1884. The bridge at
Gruenenthal over the North Baltic ship canal has the same
shape, the middle portion of the floor being suspended while
the ends are supported by posts resting on the arches. The
span is 513 feet, mean rise 77 feet, and crown depth 13.4 feet.

Another principal type of the two-hinged arch, and perhaps
the most prevalent one, has spandrel bracing. The best ex-
ample of this type is the steel arch which replaced the railroad
suspension bridge near Niagara Falls in 1897. Its span is
550 feet, the rise of the lower chord 113.3 feet, and the depth
at the crown 20 feet. The end shoe is so arranged as to form
practically a pin with a diameter of about nine feet, and with
roller friction. A short description with general plans of the
structure, together with historical notes on the bridges which
“formerly occupied this site was published in the Engineering
News, Aug. 6, 1896. See also the same periodical for April 22,
1897, as well as the illustrated descriptions in the Railroad
Gazette, April 24, 1896, and the Engineering Record, April 24,
1897. Both of the steel arches over the Niagara river were
designed by LErFFerT L. Buck. ‘

Few large arches for roofs have been erected which are
without the hinge at the crown. Those of the Grand Central
station of the N. Y. C. & H. R. R. R. in New York belong to
this class. The span is 199 feet 2 inches, and the rise 94 feet.

Prob. 75. With the aid of indexes to the engineering peri-
odicals, make as complete a list as possible of metallic arches
with two hinges, classifying the different types, and recording
the span, rise, and ratio of rise to span in each case.
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ART. 76. REACTIONS FOR AN ARCH RiB.

The stresses in any arch rib are determined from the bending
moments ‘and shears and these are to be computed by means
of the reactions of the supports. Arts. 76-85 will be devoted
to the discussion of arch ribs with two hinges. *

Let 7/ be the span of a two-hinged arch rib and /4 the rise of
its crown. Let a load P be situated at any distance £/ from
the left support, £ being any fraction less than unity. This
load is held in equilibrium by the two inclined reactions R, and
R, whose lines of action must intersect that of 2 at a common

Fig. 116.

point. The reaction R, may be replaced by its vertical compo-
nent V; and horizontal component /7, and likewise R, is given
by its components 7, and /. ‘Here A is the horizontal thrust
at the hinges due to P; it is the same at both hinges because
the sum of the horizontal forces acting on the structure must
equal zero.

The vertical forces 7} and V, are found by taking moments
successively about the supports @ and &; thus
K=P(-#) Vi=Ph ()
or, the vertical components of the reactions are the same as the
reactions for a simple beam.

For the three-hinged arch the horizontal thrust A was deter-
mined by the condition that the line of action of R, must pass
through the hinge at the crown (Art. 60). For the two-hinged
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arch, however, the value of // cannot be found by pure statics,
but a condition must be introduced based upon the elastic prop-
erties of the material. The two-hinged arch is indeed similar
to a continuous beam of two spans in regard to the determina-
tion of reactions; in both cases three unknown reacting forces
are to be fountl, while the principles of statics furnish but two
conditions.

Let the arch rib in Fig. 116 be supposed to be placed on
rollers at the end 4, so that when P causes a deflection of the
rib the end 4 moves horizontally to #. In this condition of
things there is no thrust /7. Let A be the horizontal displace-
ment 64’ thus produced. Now suppose a horizontal force /4 to
be applied at &' which is sufficiently large to bring & back to 4.
Then the value of A due to 2 is equal to the value of A produced
by A. This is the condition by which the horizontal thrust &
is determined. It is now proposed to find expressions for these
two values of the displacement A.

The deformation of an arch rib, like that of a beam, is due
mainly to flexure. The flexural stresses, when the elastic limit
is not exceeded, are proportional to their distances from a neutral
surface upon which there is no stress due to flexure. To find
the horizontal displacement A due to P, let a horizontal force
unity be applied at & in the di-
rection of &44'. The external
work overcome in the displace-
ment is then }(1 x A) and this
is equal to the internal work of
the flexural stresses. Let &s in
Fig. 117 be an elementary length
of the arch rib and 7 the moment of inertia of its cross-section
about the neutral axis. Let 4/’ be the bending moment of the
vertical forces, which produces a unit-stress #/'c// on the
remotest fiber, ¢ being the distance of that fiber from the neu-

Fig. 117.

——
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tral axis. The elongatlon or shortening of this fiber is ﬂi £ dg
which is represented by pg, and that of any other fiber distant

Mz _ds

/ E
due to the horizontal force unity at . The unit-stress due to
this on the fiber /¢’ is mz// and if a be the area of that fiber

the total stress on it is maz//. The internal work of this fiber

M'mazds
2E?

entire cross-section is effected by putting 2az2= 7. The total

internal work done by the load 2 in the entire arch rib is then
M'mds

z from the neutral axis is Now let 7 be the moment

is accordingly , and the summation of this over the

if the integral be extended over the entire span.

2E7
Equating this to the external work, gives
M'm - ds
A=) =Zr— (2)

for the horizontal displacement of & due to the load 7.

In a similar manner let #/"" be the moment due to the hori-
zontal thrust A, or M"" = — Hm. Then by similar reasoning
(see Mechanics of Materials, Art. 109),

L fa_ ®

is the horizontal displacement of 4 due to the thrust A.

Equating the two values of A expressed by (2) and (3) gives
the condition that the hinge 4 cannot move horizontally under
the action of the load 2. Hence,

_fM’ma’s m’ds‘

(4)

is the formula for determining the thrust of a two-hinged arch
under the action of flexural stresses.

Prob. 76. A cantilever beam of length / has a load P at the
free end and the equation of the elastic curve is

6 Ely = P(3 % — 25
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when referred to an origin at the free end. Show from the
preceding formula (2) that the horizontal displacement of the
free end is 2 P2/5/15 E2/3.

ART. 77. PArRABOLIC ARCH Ris.

Let the curve in Fig. 118 represent a solid arch rib of para-
bolic form, the vertex of the parabola being at the crown. The
equation of the parabola, referred to the hinge & as an origin, is

y=44(5-%) (1)

and from this the ordinates y may be computed for all values
of . A single load P is placed on this arch at a distance £/
from the left end. By the last article the vertical reactions due

Fig. 118.

to P are V=P (1—#) and V;= Pk It is required to find
the value of the horizontal thrust A. '

The deformation under the action of the exterior forces is due
mainly to flexural stresses. At any section on the left of 2 the
bending moment is A/ = Vix — Hy, and at any section on the
right of P it is M = Vix — P(x — kl) — Hy. Let M' represent
the moment due to the vertical forces and A"’ that due to the
horizontal thrust /Z. Then M' has the value Ix or Vir —
P(x —k/) and M has the value — Hy. In general, y is the
moment due to a horizontal force unity acting away from 4, and

M=M+M"=M —Hy

gives the bending moment due to all the external forces.
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Formula (4) of the last article may now be applied to the
determination of the thrust 7. In order to simplify the work
very materially let it be assumed that the moment of inertia /
of the rib cross-section varies from the crown to the skewback
hinges as the secant of the angle of inclination of the axis
of the rib. If 7, be the moment of inertia at the crown then
I=1,seci. Moreover ds =dx-seci. Substituting the values
of M', m, I and ds, the formula for /7 becomes |,

J;"P(: — B)xydx +fu'(P(: — k)r— P(x— b)) ydx
- folﬁir

and, inserting the value of y from (1) and performing the inte-

grations, this reduces to

_ 5P :
H_W(k—zka+k4) ‘ (2)

which is the thrust of the parabolic two-hinged arch due to the
flexural stresses produced by a single load 2.

Referring again to Fig. 118 let & be the point where the
lines of action of R,, P and R, intersect. As P moves across
the span & generates a curve called the “reaction locus.” The
abscissa of & is £/ and its ordinate will be called ¢. To deter-
mine ¢ it is only necessary to note that in the triangle ade the
sides a¢ and de are proportional to /7 and ¥V}, or

Uikl 16k
T H 1+ k- @)

By plotting the reaction locus from this equation the directions
of R, and R; may be found graphically for a load in any
position by connecting the hinges with the point where the
vertical through the load intersects the curve. After the direc-
tions of the reactions are known their magnitudes are readily
determined by means of the force triangle. The locus of 4 is

q
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called the reaction locus because of its use in determining re-
actions.

For a uniform load w per horizontal linear unit the thrust Z
may be obtained by substituting for P the value w.d(#/) in
(2) and integrating with respect to # between the limits o and 1.
This gives " wit
H=32 f(z- 280+ Mydb =2 @)
which is the same as that found in Art. 43 for the suspension
cable and in Art. 65 for the three-hinged arch. In this.case the
equilibrium polygon coincides with the arch axis and hence
there is no bending moment in any section of the rib due to
a uniform load over the entire span. The student sheuld
observe that this determination of /7 implies that the load is
not merely uniformly distributed on the floor of the bridge
but is transferred to the arch rib as a uniform load per hori-
zontal linear unit. With the usual construction the load is
transferred to the rib as a series of horizontally equidistant
panel loads.

Let a parabolic arch rib be taken whose span is 258 feet and
whose rise is 26 feet. It is represented in Fig. 119, and the
weight of the horizontal roadway and its loads is transmitted by
equidistant vertical columns to the rib which is thereby divided

into twenty parts. The dead and live panel loads are 59.0 and
18.2 kips respectively. With the aid of a table of squares and
cubes let the values of 1, V; and A be computed for a panel
load of 1 kip, and the results placed in the following table.
The values of A for the loads 10 to 19 are the same as those for
10 to I inclusive.

—— e ———y
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Load at " Vs H
1 0.95 0.0§ 0.3089
2 0.90 o.10 0.6084
3 0.85 0.1§ 0.8918
4 0.80 0.20 1.I5II
5 0.75 0.25 1.3812
6 0.70 0.30 1.5759
7 0.65 0.35 1.7322
8 0.60 0.40 1.8457
9 0.55 0.45 . 1.9152
10 0.50 0.50 1.9381
1-19 9-50 9-50 24.759

For the live panel loads 1 to 8 inclusive, V; =6.20 x 18.2 =
112.84, V,=1.80 x18.2 = 32.76, and A =9.4952 X 18.2 =172.81
kips. The value of A for the dead load is 24.750 X 50 =
1460.78 Kkips.

If the load were uniformly distributed over the span the
value of A would be given by equation (4) in this article, as
(59 x 20 x 258)/(8 x 26)=1463.66 kips. If this were the value
of H for the dead panel loads the vertices of the special equi-
librium polygon would lie on the parabolic axis of the arch at
the sections under the equidistant loads, but as /A is 2.88 kips
less than this there will be a positive bending moment in the rib
at any section equal to 2.88 y kip-feet, y being the corresponding
ordinate to the parabolic axis expressed in feet. The values of
7 (see Fig. 120) and of the bending moment A7 are as follows:

Section o 1 2 3 Y 5

y o 4.94 9.36 13.26 16.64 19.50
M o + 142 +27.0 + 38.2 + 479 + 56.2
Section 6 7 8 9 10

y 21.84 23.66 24.96 25.74 26.0 feet
M +629 +68.1 +71.9 +74.1 + 74.9 kip-feet

Prob. 77. An arch rib, like Fig. 119, has a span of 125 feet
and a rise of 25 feet. The floor system has 10 equal panels and
the dead and live panel loads are 50 and 15 kips respectively.
Prepare a table of reactions like the one given in this article
and compute the bending moments for the dead load.
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ARrT. 78. PosiTION AND MOMENTS FOR LIVvE Loap.

In Fig. 120 the axis of the arch whose dimensions were given
in Art. 77 is drawn, the ordinates y being however laid off to
twice the scale used for the horizontal distances. The curved

»

Fig. 120.

reaction locus is also given, the ordinates ¢ being computed by
formula (3) in Art. 77. The values of ¢ for the points o to
10 inclusive are 41.60, 39.71, 38.17, 36.90, 35.86, 35.03, 34.38,
33.89, 33.55, 33.35, and 33.28 feet. The curve is symmetrical
with respect to a vertical at the center and its ordmates are laid
off with the same scale as that used for y.

The reaction locus is used in exactly the same way as the
rectilinear reaction locus in Figs. 89 and go, Art. 63, for the
three-hinged arch. For example, the greatest positive moment
in the arch at 9 is produced by the live panel loads 6-11 inclu-
sive, and the greatest negative moment by loads 1-5 and 12-19.
The loads at 0 and 20 cause no stresses in the arch. As the
line through & and 8 almost touches the reaction line at o, the
greatest negative moment for each of the sections 1 to 8 inclu-
sive is due to the loads on the right of the line through the left
hinge 2 and the corresponding center of moments, while.the
loads on the left cause the greatest positive moment.

The live load moments are most conveniently found by com-
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putation. Thus for section 5, the greatest positive moment is.
due to loads 1-8, and equals

My = 112.84 X 64.5 — 172.81 X 19.50
—18.2(1 + 2 + 3 + 4) 12.9 = + 1560.6 kip-feet.

For the section at the crown the loading includes 7-13 and the
greatest positive moment is

My, = 63.70 X 129 — 12.9243 X 18.2 X 26.0
— 18.2(1 + 2 + 3)12.9 = + 693.8 kip-feet.
If both the positive and negative moments are computed the

results may be checked by finding the moments for a full live
load as explained in Art. 77 for the dead load.

Prob. 78. Find the position of the live load which causes the
maximum moments at sections 1 to § of the arch in Prob. 77
and compute the moments at sections 2 and 5§ due to the live
panel load of 15 kips.

ART. '79. THE AXxI1AL THRUST.

It is next required to find the thrust in the direction of the
axis at each section and this may best be done by finding the
thrust at each section due to a load of 1 kip at each panel paint
successively and tabulating the results. In Fig. 121 the com-
puted values (Art. 77) of Vj, V, and A are laid off to scale for
a load of 1 kip at points 1-10, and 15 of the arch in Fig. 120.
For instance, for the load at 5, ez, b¢ and ¢5 represent V],
V, and A respectively ; while 45 and 52 give the magnitudes
and directions of R, and R;. These directions are the same as
those obtained by joining the hinges & and & with the point §
on the reaction locus in Fig. 120 provided the vertical scale
were equal to the horizontal scale in that diagram. As the
reactions are to be projected on a number of tangents in order
to obtain the thrusts it is important that the points 1, 2, 3, etc.,
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in Fig. 121 be located accurately. Let ad be drawn parallel to
the tangent to the parabolic axis of the arch at section 5. If
the load be placed at g the thrust at section 5 is the projection
of the left reaction 5a(= R;) on ad, which equals 5'a. By

applying the scale of force it is found to be 1.501 kips. The
thrusts due to the loads 6 to 10 inclusive are found in the same
manner. For the load at 15 the values of V=/fa, V;=46f
and /=15 — f are respectively equal to V,=be, V] =ca, and
/{ = 5¢ for the load at 5. It is evident therefore that the pro-
jection of the left reaction 75 —a on ad is equal to the projec-
tion 55" of the right reaction 45 on 6d. Its value is 1.404 kips.
It will materially simplify the diagram to use the points 1 to 9
instead of 11 to 19 for the loads on the right of the crown and
to avoid errors it is desirable to add the numbers 11 to 19 in
parentheses directly below g to 1 in Fig. 121.

For a load on the left of 5, as, for example, that at 2, the
thrust at section § cquals the projection 2'a of the left reaction
2 a minus the projection ca of the load, which is shown by the
diagram to be equal to 2'c the projection of the right reaction
b2o0n ad. Its value is 0.576 kip.

In this manner the thrusts at all the sections in the left half

of the arch are found and placed in the following table. The
long dashes in the table indicate the position of the section
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with respect to the loads, and separates the thrusts to be meas-
ured respectively from ¢ and from « in the diagram. The short
dashes indicate the points of division for the live load. For
sections O to 8 the greatest positive moment is due to the loads
above the corresponding dashes, and for sections 9 and 10 it is
due to the loads between the upper and lower dashes. In order
to obtain the direction of the tangents accurately it is well to
draw a series of lines radiating from the left hinge which shall
intercept distances on the ordinate at mid-span equal to the

. quotient obtained by dividing double the rise by the number of

panels in the half-span. The tangent at o cuts off an ordinate
at mid-span equal to double the rise.

AXIAL THRUST DUE TO A PANEL LOAD OF 1 KIP.

THRUST AT SECTION.

Loap
AT
(1} 1 2 8 4 ) [] 7 8 9 10
1 0.642 | 0.614 | 0.278 | 0.283 | 0.287 | 0.293 | 0.295 | ©.300 | 0.300 | ©.305 | ©0.309
2 0.9o0 | 0.878 | 0.853 | 0.557 | 0.567 | 0.576 | 0.582 | o.590 | 0.595 | 0.602 | 0.608
3 1.146 1.129 | 1.110 | 2,091 | 0.833 | 0.846 [ 0.856 | 0.867 | 0.876 | 0.885 | 0.892
4 1.367 1.356 | 1.341 | 1.326 | 1.308" _1.089 | rro4 | 1.119 | 1130 | L.I42 | LISK
5 1.561 1.554 | 3.545 | 1.533 | 1.518 ' 1.501 | 1.323 | 1.341 | 1.354 | 1.369 | 1.381
6 1.723 1.720 | 1.715 | 1.706 | 1.696 ! 1.683 | 1.668 | 1.529 | 1.545 | 1.562 | 1.576
7 1.849 | 1.851 1.849 | 1.844 | 1.837 | 1.826 | 1.815 | 1.798 | 1.698 | 1.717 | 1.732
8 1.936 1.g40 T1.942 | 1.940 _1.936 | 1.928 | 1.919 | 1.904 | 1.888 | 1.828 | 1.846
9 1.981 1.987 | 1.992 | 1.993 | 1.99t | 1.985 | 1.978 | 1.967 | 1.953 | 1.935 | 1.91§
10 1.986 1.994 | 1.999 | 2.002 | 2.003 | 2.000 | 1.995 | %.085 | 1.974 | 1.957 | 1.938

34 1.945 1.955 | 1.963 | 1.967 | 1.968 | 1.967 | 1.963 | 1.956 | 1.946 | 1.932 | 1.915
12 1.862 1.874 | 1.88r | 1.887 | 1.889 | 1.890 | 1.887 | 1.882 | 1.874 | 1.860 | 1.846
13 1.738 1.750 | 1.759 | 1.764 | 1.767 | 1.769 | 1.766 | 1.763 | 1.756 | 1.745 | 1.732
14 1.575 1.586 | 1.504 | 1.600 | 1.604 | 1.605 | 1.604 | x.602 | 1.595 | 1.586 | 1.576
15 1.375 1.386 | 1.393 | 1.399 | 1.403 | I.404 | 1.405 | 1.403 | 1.398 | 1.390 | 1.381
16 1144 1.153 | 1.159 | 1.164 | 1.168 | 1.170 | 1.x70 | 1.168 | 1.165 | 1.159 | x.151
17 0.885 0.892 | 0.898 | 0.902 | 0.905 | 0.907 | 0.907 | 0.905 | 0.903 | 0.898 | o0.892
18 0.602 | 0.607 | o0.610 | 0.613 | 0.6x5 | 0.616 | 0.616 | 0.615 | 0.614 | 0.611 | 0.608
19 0.306 | ©0.308 | o.310 | 0.312 | 0.312 | 0.313 | 0.313 | 0.312 | 0.312 | 0.310 | 0.309

Total | 26.533 | 26.534 |26.191 |25.883 | 25.607 15.368 25.166 |25.006 |24.876 |24.793 | 24.759

To obtain the thrust in each section due to the dead load of
59 kips the quantities in the line marked ‘total’ must be multi-
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plied by 50. As the greatest positive moment at section 5 is
due to the live panel loads of 18.2 kips each at points 1 to 8
inclusive, the corresponding thrust is readily found from the
table to be 9.742 x 18.2 =177.3 kips. For the section at the
crown the required thrust due to the live load is

12.924 X 18.2 = 235.2 kips.

Prob. 79. Prepare a table similar to the above for the arch
rib in Prob. 77.

ART. 80. RIB SHORTENING.

The direct effect of the thrust along the axis is to shorten
the axis of the rib. It would also shorten the span provided
one end were free to move but as this is not the case it will
develope equal and opposite negative reactions AZ. The horizon-
tal displacement due to /A must be equal to that due to the
shortening of the rib (Art. 76).

The shortening A of a differential portion of the axis ds
which is under a compressive unit stress s equals sds/E, the
horizontal component of which is sdr/E, and hence the short-
ening of the span under the conditions named above is

A=j;'%-

To find the true value of this integral would require the variable
compressive unit-stress s to be expressed in terms of ., but as
its variation is yet unknown, an approximate result may be
obtained by using an average value of s which can be consid-
ered as constant. The shortening of the span then becomes
A =s//E. By the formula (3) of Art. 76, and making the same
assumptions regarding &s and 7 as in Art. 77,

—A s/
A= mzds—_fm"a'x (1)
E7 I,
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Here m denotes the moment due to a horizontal force of unity
acting outward at the hinge & (Fig. 116) or m =y. Inserting
for y its value for the parabola from (1) of Art. 76, and integrat-
ing between the limits 0 and /, there results,

which is the horizontal thrust due to the direct compression
along the axis of the arch rib. The minus sign here denotes
that the A is directed outward, away from the hinge, or that
it prevents the reduction of the span which the rib shortening
tends to produce. '

The above formula contains the two quantities s and /7, which
are unknown in making a design, for their values must be such
as are required to include the thrust due to changes in tempera-
ture. It is necessary therefore to obtain these values by trial.
Let it be assumed that as the result of several approximations
for the arch rib used as an example in the preceding articles,
the average area of the combined cross-section of both flanges
was found to be 185 square inches, and the moment of inertia
I, at the crown about 170 100 inchest. In determining the
average area of the flanges it was assumed that in ‘the con-
struction the area would only be changed at sections 2, 4, 6,
8, etc. (Fig. 119). '

In order to find the approximate value of s in equation (2)
which is due to the axial thrust alone it is next required to find
the average thrust due to the loading which makes the stress
in either flange a maximum. By rewriting the data in the table
in the preceding article a table may be prepared whose head-
ings are given below in this paragraph, while the first column
at the left contains the numbers o to 20 of the sections. In-
stead of inserting only half the values in the lines for the.end
sections 0 and 20 the full values may be inserted in only one

.
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of them. The approximate average thrust throughout the rib
produced by each load may be found by adding the columns
in this table and dividing the sum by 20. The results are as
follows:

. PANEL LOAD OF I KIP AT

Section I 2 3 4 5 6 7 8 9 Io
or section 19 18 17 16 15 14 13 12 II
Average thrust, 0.327 0.634 0.926 1.190 1.428 1.621 1.780 1.895 1.954 1.987

The average thrust due to the dead panel load of 59 kips is
therefore 25.497 X 59.0=1504.3 kips. As the live panel loads 1
to 8 produce the greatest positive bending moment ‘at section
5 the corresponding average thrust is 9.801 x 18.2=178.4 kips.
For the section at the crown the panel loads 7 to 13 cause an
average thrust of 13.245Xx 18.2=241.1 kips. That due to the
specified maximum change in temperature (to be determined in
the next article) causing the greatest positive moment is —40.4
kips.

Let it now be required to find the value of /7 due to the
shortening of the rib under the combined average thrust of the
loading which makes the flange stress a maximum at the crown.
This thrust is 1504.3+241.1 —40.4=1705.0 kips, which gives a
stress of 1705/185 =9.22 kips per square inch. By equation
(2), H is found to be — 30.2 kips, and the bending moment.
30.2 X 26.0= +785.2 kip-feet. The thrust equals /A at the crown,
or —30.2 kips. - The average thrust due to this /7 of — 30.2 kips.
again modifies the value previously obtained but as it is rela-
tively small it is frequently not necessary to re-compute the
value of /. As for any given arch quite a number of values.
are to be found for /A due to thrust, it will facilitate the compu-
tation by first calculating its value for s=1.0 kip and /., =1
inch?.

It will be observed that the larger part of the rib shortening
is due to the dead load. This might be eliminated if, during
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erection, the span could be shortened after the ribs are properly
connected at the center so that when the full dead load is in
place the span and rise will equal, at the standard temperature,
the values assumed in computing the stresses.

Prob. 80. Compute the bending moment and thrust due to
rib shortening at section 5 in the preceding example.

ART. 81. INFLUENCE OF TEMPERATURE.

Changes in temperature change the value of /7 but do not
affect V] or V5. It is usually specified that an arch shall be
designed to be subject to a variation of + 75 degrees from the
standard temperature of 50 degrees Fahrenheit. Let ¢ be the
coefficient of expansion and ¢ the rise in temperature, then the
span / will be increased by e#/ provided one end is free to move.
As both hinges are fixed in position when the supports do not
yield, equal and opposite positive reactions A are produced and
consequently negative bending moments throughout the arch.
The value of // must be such as to prevent the horizontal dis-
placement e#/, which corresponds to A in Fig. 116. From the

equation (3) of Art. 76, A ml:‘(;:

the value of A is found by making A=et/, m = y, ds=dx seci,
I = I, sec 7 and integrating between the limits 0 and /. Thus
! 16 Hi2 (7
Eletl = H f] ydr = : [t — 2pax
and by integrating and solving for A, there results for a rise in
temperature,

Elet
and similarly for a fall in temperature,
H=— 15 Llcel 8};;2["6t (2)

For the steel arch under consideration, with £ = 26 000 000
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pounds or 26 000 kips per square inch, /,= 170 100 inches*, ¢ =
0.0000065, ¢ = £ 75° and % = 26 feet or 312 inches, A is found
to be + 41.53 kips. The positive moments occur under falling
temperature and are obtained by multiplying & by the values
of y given in Art. 77 for the different sections. The results for
sections o to 10 (Fig. 120) are as follows: o, 205.1, 388.7, 550.5,
690.8, 809.6, 907.0, 982.6, 1036.5, 1069.0, and 1079.7 kip-feet.

By means of a diagram similar to Fig. 121 the thrust at
the sections o to 10 due to = 1 kip are found to be: 0.926,
0.939, 0.951, 0.962, 0.972, 0.980, 0.987, 0.992, 0.996, 0.999, and
1.000 kip, and the average thrust is 0.974 kip. For A = 41.53
kips the thrusts corresponding to the positive bending moments
are — 38.5, —39.0, —39.5, — 39.9, — 40.4, — 40.7, — 41.0,
— 41.2, — 41.4, — 41.5, and -- 41.5 kips, whlle the average
thrust is — 40.4 kips.

Prob. 81. Construct a diagram showing the forces acting
upon the arch in the above example when the fall in tem-
perature is a maximum. Draw the force diagram and the
special equilibrium polygon, and indicate the closing line of
the polygon.

ART. 82. FLANGE STRESSES.

The moments and axial thrusts at the crown of the parabolic
arch rib under the influence of the dead load, live panel loads
7 to 13 (Fig. 120), a decrease in temperature of 75 degrees
below the standard, and the shortening of the rib due to the
thrust, and which together produce the maximum positive mo-
ment, were found in Arts. 77-81 to be as follows:

SECTION 1o.
BENDING MOMENT. AxiaL THRUST.
Dead load + 74.9 kip-feet 1460.7 kips
Live load (7—13) + 693.8 235.2
Temperature + 1079.7 —41.5
Rib shortening + 785.2 —30.2
Total + 2633.6 1624.2
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In computing the moment of inertia /7, an effective depth of
5 feet was assumed, and if the flanges are to take all the mo-
ment and the web all the shear, as usually specified, the maxi-
mum compression in the upper flange is
2633.6/5 + 1624.2/2 = 1338.8 kips,

and for an allowable unit stress of 15000 pounds or 15 kips
per square inch the flange area must be 1338.8/15=89.25 square
inches.

For the maximum negative moment the moments, when taken
in the same order as above, are + 74.9, — 672.3, — 1079.7, and
+ 814.0 kip-feet, while the corresponding axial thrusts are
1460.7, 215.4, 41.5, and — 31.3 kips making the maximum
compression in the lower flange 1015.8 Kkips.

Since at section 8.a flange area of 92.56 square inches is
required the flange from that section to the crown will be given
this area. Its composition is as follows:

6 Angles, 6 x 6’ x 9/16" . 38.58 sq. in.
3 Plates, 14" x 9/16” 23.64
3 Plates, 18” x 9/16" 30.36

Total area, 92.58 sq. in.

The arrangement of the shapes for the upper flange is shown
in Fig. 122. The center of gravity of the flange is 4.66 inches
above the backs of the lower angles, making the web plate
about 50} inches deep. If the web be _ _ R
spliced at every section each sheet will * =
,measure very nearly 52 inches out to out,
since for this length the offset from the
parabolic axis to its chord is nearly § inch.
The moment of inertia of the flanges is
170070 inches*.
At section 1 the maximum flange stress
occurs when the negative moment is a maxi-
mum, at o under full load and rising temper- Fig. 1.
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ature, and at the remaining sections when the positive moment
is a maximum. If the flanges are curved, as is usually the case,
an additional moment must sometimes be considered when the
maximum stress occurs in the lower flange. The line of action
of the resultant of the thrust coincides with the chord of the
axis in each division or panel and the moment due to this is a
maximum at the middle of the division, the lever arm being the -
offset from the chord to the axis. In the present example the
moment at the right end of each of the two end divisions is so
rhuch larger than at the middle that the effect of the curvature
of the rib need not be computed. It is also found that the
flange remains in compression throughout the arch under all
conditions of loading.

in_Upper| /7, |
11400 kips n!._/sték
\G ;&

Lr200 ,/

/
Fl000
F800— Dead L oad
600

Live |l oad

- -~ \\
I

. Eq&rﬂ ,u_r.e——d

== Shorfening
—::17"—_— RID | [
(_ K 4 [ k4 ] [

Fig. 123.

Fig.- 123 shows the variation of the maximum stress for the
left half of the arch. The greatest compression in the flange
occurs at section 6 and the stress decreases toward the left and
also somewhat toward the crown. At the crown the stress due
to the dead and live loads is about 75 per cent of the -total.
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The diagram shows that the customary assumption that the
moment of inertia increases from the crown to the hinges as
the secant of the angle of inclination of the axis is not even
approximately true outside of the quarter points. The stresses .
obtained are however sufficiently near to the true values as to
answer the purposes of design in most cases.

Prob. 82. What should be the composition of the flanges on
either side of section 6 provided the change from that at other
sections is confined to the outer cover plates and that no plate
is to exceed % inch in thickness?

ART. 83. SHEAR.

In Art. 72 was given the method of finding the position of
the live load which combines with other loads to make the
shear a maximum in any given section. The method is exactly
the same for a two-hinged arch in which the curved reaction
locus replaces the rectilinear reaction locus' of the three-hinged
arch. Referring to Fig. 120, Art. 78, one point of division for
the live load which causes the greatest shear in section § is
found by drawing through the hinge at @ a line parallel to the
tangent to the axis at 5, and which intersects the reaction locus
a little to the right of 13. As the section is supposed to be
passed immediately on the left of § there is another point of
division between 4 and 5 for the reasons given in Art. 63.
Therefore the greatest positive shear is due to loads 5 to 13
inclusive, and the greatest negative shear to loads 1 to 4 and
14 to 19 inclusive.

In the arch rib under consideration the maximum shear at
every section from 1 to 10 is positive. The most convenient
method of finding the shear at any section, as for example,
section 5, is to obtain the values of /; and A for the required
loading, project each force on the normal section at 5 and add
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the results algebraically. The diagram in Fig. 120 does not
show the true direction of the section since the ordinates
are exaggerated.

If the dead load were uniformly distributed over the span
there would be no normal shear at any section but as it is
concentrated in panel loads the shear produced is the same
as if there were no loads on the left half of the arch, while ]
equals a half panel load or 29.5 kips, and /' = — 2.9 kips
(see Art. 77). When the live loads 5-13 are on the arch V=
4.95 x 18.2=g90.1 kips and A =15.8814 x 18.2=289.1 kips
(see table in Art. 77). For positive shear the thrust A for
temperature must have its largest negative value of 41.5 kips
(Art. 81), which occurs under the specified decrease of 73
degrees in temperature. Under the given loading the aver-
age thrust in the arch is 1504.3 + 332.8 — 40.4 =1796.7 kips
which makes /= — 31.8. The total value of V] is therefore
29.5 +90.1 = 119.6 kips, and that of A is — 2.9 4+ 289.1 —41.5
—31.8=212.9 kips. The sum of the components of these
forces in the direction of the normal section at 5, as found
graphically, is + 117.0 — 42.1 = + 74.9 kips.

The maximum shears at the sections I to 10 inclusive are
respectively, + 100.5, + 90.0, + 82.0, + 70.2, + 74.9, + 76.7,
+ 79.6, + 81.0, +81.2, and + 79.6 kips. They are preferably
found for the sections at the points indicated rather than for
intermediate ones since the web plate is spliced at those sections.

If the web plate be assumed as }“inch thick at section 1, and
a bearing of 15 kips per square inch be allowed on the rivets,
the bearing value of a f-inch rivet is 6.56 kips, and 100.5/6.56
= 16 rivets will be required. This leaves a net section of
(50.5 — 16)} = 17.25 square inches, provided holes 1 inch in
diameter be deducted. If the allowable shearing stress in the
web be 6 kips per square inch the net section required is
100.5/6 = 16.75 square inches, indicating that the assumed
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thickness is correct. This thickness will be continued to section
3, a thickness of % inch being used from there to the crown.

In order to find the number of rivets necessary to transmit
the maximum increment of flange stress, for example, between
sections 4 and 3, to the web plate, the flange stresses are found
which are due to bending alone for the loading which produces
the maximum shear in the web. The value of /A is 212.9 kips
as found above, but that of J/; must be reduced by the half
panel dead load, making it go.1 kips for reasons that will be
apparent on considering the statement at the end of Art. 78
respecting the'moment due to dead load in connection with that
relating to the dead-load shear in this article. The bending
moment at 4 is + 90.I X 4 X 12.9 — 212.9 X 16.64 = 1106.5 Kip-
feet, and that at § is 90.1 X § X 12.9. — 212.9 X 19.50 = 1659.9 kip-
feet. As the effective depth is 5 feet, the difference of flange
stress is (1659.9 — 1106.5)/5 = 110.7 kips. The bearing valuc
-of a f-inch rivet in a {g-inch web being 5.74 kips for the
allowable stress given above, the number of rivets required
is 110.7/5.74 = 20. As this number is so small the pitch would
be reduced below that required on other considerations. Ade-
quate provision must be made for the transfer of the panel loads
from the posts to the web of the arch rib, and as this load is
transmitted through some of the flange rivets to the web, their
pitch near the post connection should be considerably less than
elsewhere. 4

Prob. 83. Find the maximum shears, due to the dead and
live load only, for sections o to 5 of the arch rib in Prob. 7;.

ART. 84. ArcH RiB witH OPEN WEB.

When the chords are united by open bracing as in Fig. 124
the maximum stresses in the chords may be found in the same
manner as for a solid web by using as centers of moments the
points where the verticals are intersected by the axis of the rib.
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Since S has its center at the lower panel point § its maximum
stress is due to the loading which causes the maximum moment
in section 5-5, while S, receives its maximum stress when the

Pig. 124.

moment is a maximum in section 4—4. If the loading were
found for the maximum moment at the lower panel point § and
the value of the moment divided by the lever arm of S; the
same result would be obtained as by adding the stress due to
the maximum moment at the intersection of the axis and sec-
tion 5-5, and that due to the corresponding axial thrust. It
saves considerable labor to use the latter method.

To illustrate the method of finding the stress in any web
member, as the diagonal S,, let one of the chords cut by the
given section, as S; be produced until it meets at f the line
of action of the reaction R, for the required loading, and let
this point be joined with ¢ which is the intersection of the other
two members cut by the section. If R,; is the only external
force on the left of the section it is held in equilibrium by the
three stresses S;, S; and S; and the line ¢f therefore is the line
of action of the resultant R’ of the stresses S; and S,. By
means of the force diagram let R, be resolved into S; and R’
and then R’ again resolved into S; and S,. Since R, acts
from m toward #, S; will act from z toward o, and hence
toward the right or away from the section, which indicates
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tension. R’ acts from o toward w, and as it is the resultant of
S, and S, S, will act from o toward p and S, from p toward ».
S, is therefore tension and S; compression. If any loads are
on the left of the section the line of action of the resultant of
R, and those loads must be found and then the resolution
of the resultant made like that for R, above.

When S, and S; are nearly parallel as in Fig. 124, the stress
in-S, may also be found by obtaining the maximum shear in a
section perpendicular to the mean of their directions or to the
axis of the arch at the middle of the panel, in the manner
explained in Art. 83. On multiplying the shear by the secant of
the angle which S, makes with this section its stress is obtained.

It is desirable that the web members should consist of ver-
ticals and diagonals rather than that all of them should be
inclined, because it was practically assumed in the deduction
of the formula for /A that the load is applied at the axis.

The graphic analysis employed for the three-hinged arch in
Art. 66 may be used with equal advantage for two-hinged
trussed arches. If by diagrams similar to Figs. 94 and g5 the
stresses be found for V; and /A equal to 1 kip each, the com-
bined stress for any given values of the reactions may be
obtained by taking the sum of two simple products. When
this analysis is employed the reactions are preferably found
by the method given in Art. 86, and illustrated by an example
in Arts. 87-90.

Prob. 84. A parabolic arch rib has a span of 198 feet and a
rise of 33 feet to a point midway between the chords. The
chords are 6 feet apart and the bracing is like that shown in
Fig. 124. The floor system is divided into 12 equal panels and
the supporting bents rest on the ribs at its alternate panel
points. Draw the stress diagram for a dead panel load of
64 kips, no load being applied at the panel points of the rib
between the bents.
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ART. 85. CIRCULAR ARCH RIB.

By introducing the equation of the circle instead of the parab-
ola in Art. 77, the value of &/ may be found for a circular arch
rib. The resulting integrations are however very tedious and
the final expression for /A contains so many terms that special
tables are required for its convenient evaluation. If in the
article just mentioned the axis of the arch used as an example
were circular, the value of A would be 1.339 for a load of unity
at panel point 5, instead of 1.381 for the parabolic axis. The
circular axis of the arch would, however, lie wholly outside of
the parabolic, and if the rise of the former were reduced so that
both curves should include the same area above the line joining
the hinges, the difference between the values of A would be
considerably less.

When the rise is one-fifth of the span and a load of unity is
placed at the quarter point the values of /A are 0.669 and 0.696
for the circular and parabolic arches respectively. If the rise
is one-fourth of the span and the load is placed in the same
position the corresponding values of /A are 0.562 and 0.556.
It is observed that for this ratio of rise to span the /A of the
circular arch now slightly exceeds that of the parabolic.

Very few arches have been built with less than three hinges
whose rise exceeds one-fourth of the span and within this limit
the approximate stresses in a circular arch may be found by
substituting for its reactions those of a parabolic arch whose
axis encloses the same area.

Prob. 85. Compute the rise of a circular arch rib whose span
is 210 feet and whose axis shall enclose the same area as the
axis of a parabolic arch of the same span and a rise of 30 feet.
Compare the ordinates at intervals of one-tenth of the span.
Which form has the advantage on account of @sthetic con-
siderations ?




ARrr. 86. REACTIONS FOR A BRACED ARCH. 239

ART. 86. REACTIONS FOR A BRACED ARCH.

The term ‘braced arch’ is sometimes applied to the case
where two curved chords are connected by bracing, as in
Fig. 124, but more commonly to the case where the structure
consists of an arched lower chord and a horizontal upper chord
as in Figs. 125 and 127. The latter form is generally called
the spandrel-braced arch. While an arch rib is analogous to a
beam, a braced arch is analogous to a truss and hence the
horizontal thrust / cannot be derived by the formula established
in Art. 76 from the consideration of pure flexural stresses. It
is now proposed to deduce a method of determmmg H for the
braced arch with two hinges. .

Let Fig. 125 represent any braced arch whose span is / and
let a load P be placed at any distance £/ from the left end.

‘ P
‘..;....é[ ......
L T ead
H g NV .4
4 A

Fig. 125.

The reactions at the supports are resolved into their ver-
tical and horizontal components, and, as for the arch rib,

= P(1 — &), V, = Pk, ()
are the vertical components of the reactions.

To find the horizontal component, or horizontal thrust A,
similar reasoning to that in Art. 76 will be employed, the hinge
4 being supposed to move horizontally to &' under the action of
P and then brought back to & under the action of 7. Thus the
displacement A due to P is equal to that due to A, or A must
have such a value that the length of the span remains un-

—————— . .
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changed. The method of expressing the two values of the
displacement A is similar to those given in Arts. 78 and 79 of
Part I for finding the deflection of a point in a truss.

Let L be the length of any member of the trussed structure
and A the area of its cross-section. Let S’ be the stress pro-
duced in it by P when the end & is free to move. Then the
elongation of that member is S’L/AE. Now suppose a hori-
zontal force of unity to act at 4 in the direction ¥ and let 7 be
the stress in the member produced by it. The internal work
in the member then is } S'7L/AE, and this resists the
external work (1 x A). Hence taking all the members of the
structure, SITL

A=32—= 15 (2
is the horizontal displacement produced by the load P.

Again, let U be the stress in any member produced by the
thrust 4, or U= H7. Then by the same reasoning,

UiL T2
_ UL
A=g2 =" % 3

is the horizontal displacement produced by the thrust A.

Equating these two values of A gives the general formula
TL s T 2L
H= 25 / sT*L (4)

which is an expression for computing the horizontal thrust for
any trussed two-hinged arch due to a load 2. It may also be
noted that this formula is an expression for the horizontal
thrust due to any system of loading provided that S’ represents
the stresses due to that loading. In all cases the stresses S’
are computed from the vertical reactions V; and V exactly as
if the structure were a simple truss.

As an elementary illustration let a straight beam of uniform
section be bent so as to form two straight rafters having a span



ART. 87. THE SPANDREL-BRACED ARCH. 241

/ and a rise %, the bend being ‘at a horizontal distance §/ from
the left end and }/ from the right end. Let these ends be pro-
vided with hinges and a load P be applied at the peak. Then
Vi =4 P and V, = § P, which produce in the two struts, whose
lengths are L, and L,, the two stresses,
PL 2 PL
/ =—1; / =-—29
S’y Tk Sy v
while a horizontal force unity at the hinge gives the stresses,
=34, 1 _3L,
h=37 2T

As the values of 4, and 4, are equal and £ is the same for both
rafters, the formula (4) becomes, '

ST L+ S, T,L, _2 Pl
T3, + T2L, 9k
which is the horizontal thrust due to the load 2.

H=

Prob. 86. A straight beam of uniform cross-section is bent
at the middle so as to have the span / and rise %, the two halves
remaining straight. . Hinges are placed at the ends, one being
fixed in position and the other free to move horizontally. Com-
pute from (2) the horizontal displacement of the free end when
a load P is applied at the peak.

ART. 87. THE SPANDREL-BRACED ARCH.

The usual form of the spandrel-braced arch is shown in

- Fig. 126. The vertical reactions /; and V, are the same as

for a simple truss. The horizontal thrust /, however, depends
upon the lengths and cross-sections of the members as shown
by (4) of Art. 86. When V;, V,, and A have been found for
any given load P the stresses due to that load are readily de-
termined by the methods of Chapter V. Let S’ be the stress
in any member when the arch is treated as a simple truss, and
let 7 be the stress in the same member due to a horizontal
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force of unity at the hinge acting in the direction of /. Then
S=S8+HT (1)
gives the stress in that member under the action of all the

forces P, Vi, V,, and H. The stresses S’ and 7" used in com-
puting /7 may hence be directly used to find the final stress S.

In order to determine / by the graphic method it will be
best to modify formula (4) of Art. 86. For this purpose let
8 be the deflection of the arch under the load P due to a hori-
zontal force unity acting at the hinge and ‘away from it; whence
the deflection under the load due to a horizontal force 2 acting
at the hinge is 28. Then the horizontal displacement A = 29,
because in (4) it is immaterial whether S’ be the stress due
to the vertical load 2 and 7 that due to a horizontal force unity
at the hinge, or whether S’ be the stress due to a horizontal
force P at the hinge and 7" that due to a vertical load of unity.
Further, let & be the horizontal displacement of the hinge due
to a horizontal thrust of unity, then A& is the displacement
due to A, or A equals //&'. Accordingly

HS = P8 or H= Pg (2)
is the formula for use in determining // by the graphic method,
8 and &' being found by a displacement diagram.

If the areas of the cross-sectipn® are known for all the mem-
bers of a braced arch the elongation A may be computed for
each member due to the stress produced by a horizontal thrust
of unity, and a displacement diagram similar to Fig. 105 be
constructed in the manner described in Chapter VII of Part II.
As the truss is symmetrical only one-half of the diagram need
be drawn. From this diagram the horizontal displacement &'
at the hinge and the vertical deflection & at each panel point
may be directly measured, and then from (2), A is found for
each panel load. As the ratio of & to & depends only on their
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relative values the computations may be abbreviated by taking
E equal to some convenient unit, as I or 1000.

Very close approximate values of // may be found by assum-
ing all cross-sections to be the same and for the reason given
above this may also be taken equal to unity. For exarﬁple, let
the truss of the spandel-braced arch erected at Niagara Falls

o U U U Y s Yy U, 4

Fig. 126,

in 1897 be taken. The span is 550 feet, and the rise of the
lower chord in the plane of the truss is 113.9 feet. Each upper
chord member is 34.375 feet long, and the lengths of the lower
chord members, beginning at the end, are 43.621, 41.511, 39.616,
37.964, 36.588, 35.521, 34.792, and 34.422 feet respectively.
The lengths of the verticals are 134.000, 107.817, 84.546, 64.854,
48.742, 36.211, 27.261, 21.896, and 20.100 feet, while those of
the diagonals are 113.164, 91.267, 73.403, 59.644, 49.929, 43.873,
40.753, and 39.820 feet respectively. These dimensions, the
dead panel loads, and the data given in the first paragraph of
Art. 9o, were furnished by L. L. Buck, Chief Engineer.

The stresses due to a horizontal thrust of unity are given
in the following table. Since these values are also to be used
later as multipliers for the ordinates of the influence diagrams
in determining the live load stresses as well as in finding the
temperature stresses, it is best to check U; — Uy by computation.
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STRESSES DUE TO A =1. (SeE FiG. 126.)

Susscriprs. U L D 14
o - —1.257 — +0.762
1 +0.243 —1.501 —0.799 +0.841
2 +0.585 —1.827 —0.908 +0.908
3 +1.066 —2.282 —1.028 +0.968
4 +1.749 —2.926 —1.183 +1.002
5 +2.701 —3.824 —1.382 +0.964
6 +3.915 —4.975 —1.551 +0.768
7 +5.121 —6.130 —1.430 +0.319
8 +5.667 -_ . —0.631 o

By expressing the lengths of the members in inches, the
stresses in kips, and taking £ as 1000 kips per square inch
and the area of cross-section 4 as one square inch for all the
members, the computed values of A will be expressed in inches.
By drawing a displacement diagram to a scale of one eighth,
the following deflections & were found for the upper panel
points o to 8 inclusive: 1.22, 27.66, 53.1, 77.4, 100.4, 121.4,
139.3, 152.0, and 156.38 inches. The horizontal displacement
&' of the right hinge & was found to be 2 x 88.4 = 176.8 inches.
On dividing each deflection by & the following reactions /A are
obtained for a load unity placed successively at the upper panel
points o to 8 inclusive: 0.007, 0.156, 0.300, 0.438, 0.568, 0.687,
0.788, 0.860, and 0.885. When these values are laid off as
ordinates in Fig. 128 the influence line for # is obtained. It
will be shown in Art. 9o that the final value of A for a load
at the middle differs from this approximate value by about
four per cent.

The dead panel loads o to 8 inclusive are 375.0, 237.5, 199.5,
183.0, 165.0, 162.0, 160.0, 164.5, and 159.5 kips. The large
panel load at the end is due to the fact that the arch supports
one end of an approach span 115 feet long. To increase the
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lateral stability the plane containing the center lines of the truss
members is inclined, so as to make an angle with the vertical
whose tangent is one-tenth. The panel loads in the plane of
the truss are therefore the product of the vertical panel loads
and the secant of this angle, and are found to be 376.9, 238.7,
200.5, 183.9, 165.8, 162.8, 160.8, 165.3, and 160.3 kips. The
value of A due to the dead load is found by multiplying each
panel load by the corresponding ordinate in Fig. 128 and adding
the products, the result being 1452.7 kips. V;=1V;=1734.8
kips. The dead load stresses may now be found by constructing
a stress diagram. The stress in Lz is —1326; in U —1057; in
D,, + 210; and in V5, —356 kips. Since the lower panel points
do not all lie in a parabola, and the panel loads are not equal,
there are dead load stresses in all the web mcmbers, those in
the diagonals and in the verticals respectively varying but little
comparatively throughout the span. The stresses in both chords
are compression throughout, those in the upper chord increasing
toward the middle and those in the lower chord from the middle
toward the ends.

Prob. 87. Construct the displacement diagram referred to’
above, to determine the vertical deflections of the upper panel
points and the horizontal displacement of the right hinge.

ART. 88. LivE LoAD STRESSES.

The advantages of influence lines in determining the live load
stresses are so great in this case that they will be employed.
Let M be the bending moment for any given truss member due
to the vertical load and the vertical components of the corre-
sponding reactions, that is, as if the arch acted as a simple
truss; and let y be the ordinate to the given center of moments
measured from the axis through the end hinges. Then the
required bending moment is M/ = M’ — Hy, and if 7 is the lever
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arm of the member, its stress is S=¥ = l(M’ —Hy). In

;
order that the influence line for /7 may be employed directly let

this equation be transformed into
(M
S= r( 3 H). (1)

The greatest tension and compression in the member due to
the live load may therefore be found by constructing the
influence line of M’/ y in such a relation to that of A, that the
ordinates between them will represent the difference between
their respective ordinates, and after adding the positive and
negative ordinates separately multiplying thevrespe'ctive sums
by wuc quantity y/7, which is known as the multiplier of the
influence diagram.

To aid in avoiding errors it is desirable to lay off the ordinates
of both influence lines in such a way that the ordinates between
the lines shall indicate tension when above the A-line and com-
pression when below it. With this arrangement the multiplier
in equation (1) will always be regarded as positive. '

For example, let it be required to find the live load stresses
in L4 of Fig. 127. Its center of moments is at panel point e
For a load unity on the right of ¢; the left reaction Vj is 1.2/ // -
if #/ be the distance from the load to the right support. Let »
be the distance from the left support to the center of moments,
then M'=x'x//, and since y in this example equals %, the depth
of the truss at the end, M'/y =x'x/ky. If this relation were
also true when the load is on the left of the center of moments
the value of M’'/y when the load is at the left end would be
x/hy, which for Lz becomes 3p/%,, p being the panel length.
Substituting the numerical values of p and /%,, this quantity
equals 3 X 34.375/134.0=0.770. Let this value be laid off as
an ordinate a'e;' in Fig. 128, and let the right line connecting
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2" and # intersect the vertical through the center of moments
eg at ¢, then a'ey/d is the line of influence of M’/ y for Lg,

The direction in which a'ag'’ should be laid off is most readily
determined by observing that the product of x/%, and the
multiplier in equation (1) is the stress in Lz due only to a verti-
cal reaction of unity at @, which is tension (+), and hence the
ordinate is laid off above the axis @’4’. The stress in Ly due to
H is the product of A and the multiplier and this is compres-
sion ( —), but since this is the subtraction term in equation (1)
it becomes +, and therefore the ordinates of the A-line are
also laid off in a positive or upward direction from the axis.

Fig. 128 shows that the greatest tension is due to th&'»é;‘/e
panel loads 1 to 4, and the greatest compression due to the
loads o and 5-16 inclusive. Since the loads at o and 16 are
equal respectively to the reaction of one approach span plus a
half panel load on the arch, the stresses due to them will be
determined separately.

The specified live load for each track consists of a uniform
load of 3500 pounds per linear foot preceded by two loco-
motives each weighing 256 000 pounds and 54.25 feet long, and
for the highway floor a uniform load of 3000 pounds per linear
foot. The uniform panel load per truss is therefore 171.9 kips
and for convenience let the excess of the locomotives over the
corresponding uniform load be represented approximately by
the addition of four-tenths of a panel load to the first two panel
loads. When reduced to the plane of the truss the live panel
load is 172.8 kips. On account of the two locomotive panel loads
the greatest tension is obtained in L, by placing them at 3 and
2 and leaving 4 unloaded. The ordinate at 1 measures 0.053
and the sum of those at 2 and 3 is 0.304,. therefore the
stress in Lg is

S=+(0.053 +0.304 X 1.4)172.8 X 2.282 = + 189 kips.
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The quantity 2.282 is the multiplier y/7 in equation (1) and is
numerically equal to the stress in Ly due to a horizontal thrust
of unity. See table in Art. 87. For the reason previously
given no attention need to be paid to its sign in the preceding

2

Fig. 131.
equation. The locomotive panel loads will next be placed at
5 and 6 and the remaining loads at 7 to 15 inclusive. The sum

of the ordinates at 5 and 6 is —0.464 and that of the rest is
— 3.376, making the stress

S=—(0.464 X 1.4+ 3.376)172.8 x 2.282 = — 1587 kips.
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The influence lines of M’/ y for all the lower chord members
may be placed in the same diagram, Fig. 128, provided care be
exercised in adding the ordinates with the dividers. The points
a'" will be equidistant and the points ¢/ will lie on a parabola.

In Fig. 129 the corresponding influence lines for U are
given. The ordinates to the straight lines are laid off below
the axis because the stress in Uy due to a vertical reaction of
unity is compression (—). The stress due to the horizontal
thrust of unity is tension (+4), which sign becomes minus on
account of the sign of A in equation (1), and hence the ordi-
nates of the Aline are also laid off downward. The ordinate
a'ag! equals /

M _8p_Bx34375_, ..

y 113.9 ‘

The original diagram showed that the loads 2-14 cause com-
pression in U;. Since the sum of the ordinates at 2 and 3 is
however less than four-tenths of that at 5, the largest compres-
sion is obtained by placing the locomotive panel loads at 4 and
5, and the other panel loads at 6 to 14. Since the multiplier . is
5.667 the stress in Uj is

S=—(0.103 X 1.4+ 1.068)172.8 x 5.667 = — 1187 kips.

For the tension in U a locomotive panel load is placed at 1 and
a train panel load at 15. As each of the corresponding ordi-
nates measure 0.005, the stress is + 12 kips.

If the panel points of the lower chord were all on a parabola -
the points £’ for all the upper chord members would lie on a
straight line parallel to the axis a'4'.

The influence lines for D, are shown in Fig. 130. ‘The center
of moments is at the intersection of the chord Lg with the hori-
zontal upper chord, which is 0.87 foot on the right of panel
point 7, making x=241.49 feet and M'/y=x/hy=241.49/134.0
=1.802, which is laid off as the ordinate a'a,/’. The ordinate
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is positive since the vertical reaction of unity at & causes tension
in D,. The ordinate 4'6,' equals x'/4,, »' being the distance
from the center of moments to the right support. The product
of 2/ /4y and the multiplier of the influence diagram equals the
stress in D, when the truss is regarded as fixed at the left end
and subject only to the vertical reaction of unity at 4, and
hence the ordinate must also be laid off upward. Its value is
(550 — 241.49)/134.0 = 2.302. A useful check on the construc-
tion is that the lines a'4," and 2,''#/ must intersect in the vertical
through the center of moments of D,. As shown in Art. 74
the influence line for '/ y for this diagonal is a'g,/#,/#, the
right line g,/#,’ being located in the same panel of the loaded
chord as is cut by the section used in finding the stress in D, by
the method of moments. When drawn to a large scale Fig. 130
shows that the greatest compression is due to the loads 1-3
and 9-15 inclusive. Placing the locomotive panel loads at 9
and 10, the stress is found to be

S =—(0.029 + o.i84 X 1.4 + 0.460)172.8 x 1.185 = — 153 Kkips.
The loads at 1, 2 and 3 may be regarded as due to the rear of
a preceding train. The greatest tension is due to panel loads

4-8 inclusive, the locomotive panel loads being placed at 4 and
5, and the other panel loads at 6, 7, and 8. The result is

S =+4(1.335 X 1.4 +0.508)172.8 x 1.185 = + 487 kips.
Since the vertical I; has the same center of moments as D,

the influence lines for its 47’/ y will be.the same as for D, except
that the right line g3'4,' is mqved a panel toward the left. This
is due to the fact that a section cutting V5 and two of the chords
passes between the panel points 2 and 3 of the loaded chord.
The greatest live load tension is
S = +(0.024 +0.184 X 1.4 + 0.460)172.8 X 0.968 = + 124 Kkips,
and the greatest compression is '

S =—(1.810 X 1.4 + 1.060)172.8 X 0.968 = — 601 kips.
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For V, the influence diagram for M’/ y is a right triangle,
the point g,’ coinciding with ', and # with 4’ (compare Fig.
131). The influence lines and stresses for the remaining truss
members are found in the manner described above, those for
each set of members, as the upper chords, lower chords, diago-
nals and verticals, being combined in a single diagram.

The approach trusses have 6 panels and a span of 115 feet
(see Engineering News, Aug. 6, 1896). A full uniform live load
will therefore cause a reaction of } x 115 x 5.0=287.5 kips.
When reduced to the plane of the arch truss and a half panel
load is added, the live panel load at o and 16 becomes
375.4 kips. With the aid of the table in Art. 87 the stresses
_ due to both loads o and 16 are found to be: — 24 kips in
Lg; +60kips in Uy; — 12 kips in D,; and + 10 kips in Vj.
Since a locomotive panel load instead of a train panel load
must be placed at o (one having previously been placed at 1)
to obtain the greatest tension in Uy it is necessary to add the
stress of + 2 kips to the preceding one. These live load
stresses must then be added to those of the same kind pre-
viously found for the members Ly, Uy, D,, and V3.

In case it be desired to find the stresses due to specified
wheel loads it may be done as explained in Art. 74. For
trusses where the live load stresses are relatively so small as
in the example under consideration this is regarded as an
unnecessary refinement.

Prob. 88. Draw the influence lines for Z,, /; and Dy in
Fig. 126, and find their greates* tension and compression due
to the live load.

ART. 89. TEMPERATURE STRESSES.

In Art. 87 it was shown that the horizontal displacemént
of the right support & due to a horizontal thrust of one kip,
and with the assumed values for £ of 1000 kips per square
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inch and for cross-section areas 4 of one square inch, was
176.8 inches. If E is 29 000 kips per square inch the values of
the elongations A were laid off 29 4 times their true value and
hence the corresponding-displacement in inches.is 176.8/29 A4.
For a change in temperature of 75 degrees and a coefficient of
expansion of Q.0000068, the span being 550 x 12 = 6600 inches,
‘the change in the length of the span is

0.0000065 X 75 X 6600 = 3.218 inches,
and hence the corresponding horizontal reaction is
' H=3.218 x 29A/176.8-_;o.528A kips. (1)

The value of A4 in this equation is not a simple average of
the areas of cross-section of the truss members but a weighted
mean, the weight of some members being much greater than
that of others. For instance, on modifying the displacément
diagram, referred to in Art. 87, so as to omit the elongations
of all the web members the value of /A for a load at the middle
was reduced only 2} per cent, the difference increasing to about
3 per cent for a load at panel points 2 and 3. The influence
of the chord members on / increases very rapidly toward the
middle since the lever arm of /A increases while at the same
time the lever arm of the stress decreases. An examination
of the displacement diagram also shows that a given elongation
or shortening of a chord near the middle of the span causes
a much larger deflection than if it occurred in a chord member
toward the ends of the span. On account of these considera-
tions the mean value 4 will not differ very far from the area
of U, whose influence on / is the greatest of all the members.

In order that the approximate temperature stresses may be
on the safe side let 4 in equation (1) be assumed as equal to
that of U;. The stress in U due to a horizontal thrust of one
kip is 5.667 kips and hence the temperature stress equals

S =15.667 x 0.528 4 = 2.99 4 kips,
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which is tension for a rise and compression for a fall in tem-
perature. The dead load stress is — 1007 kips, and that due
to live load is — 1187 kips, and to these must be added the wind
stresses. The cross-section area of Uy can then be readily found
by trial for any specified unit stress per square inch. The final
area is 173.33 square inches, and therefore the temperature
stress in Uy is +2.99 X 173.33 = % 519 kips. The correspond-
ing value of A is obtained by equation (1) and is

H=0.528 x 173.33 =91.5 kips.

The preliminary temperature stresses in all the members may
now be obtained by multiplying the stresses in the table in
Art. 87 by this value of A.

ARrT. go. FINAL HoORIZONTAL REACTIONS.

The areas of cross-section adopted in the design of the arch
which was used in an example in Arts. 87-89 are as follows,
being expressed in square inches: In the upper chord begin-
ning at the end, 69.5, 69.5, 79.63, 107.8, 138.0, 167.23, 176.11,
and 173.33; in the lower chord, 316.67, 289.55, 282.05, 270.05,
262.42, 249.26, 228.76, and 191.1; in the diagonals, 82.59, 78.48,
71.0, 65.94, 56.44, 76.0, 110.5, and 147.69; and in the verticals,
127.39 (123.38), 97.11, 91.11, 84.61, 78.67, 74.67, 74.67, 75.17
and 41.92.

The lengths of the members and their stresses due to a hori-
zontal thrust of one kip are given in Art. 87. The elongations
are next computed by dividing the corresponding values used in
that article by the respective areas. By means of a displace-
ment diagram, drawn to a scale of 0.04 inch to an inch, the
deflections of the upper panel points o to 8 were found to be as
follows: 0.0098, 0.1865, 0.3555, 0.5149, 0.6635, 0.7995, 0.9I105,
0.9865 and 1.0139 inches. The horizontal displacement of the
right support was found to be 0.§551 X 2 = 1.102 inches.
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On dividing the deflection of each panel point by the hori-
zontal displacement of the support the horizontal reaction / is
obtained due to a vertical load of one unit applied at that point.
If the load be 1 kip, A will also be expressed in kips. The
values obtained are as follows : 0.009, 0.169, 0.323, 0.467, 0.602,
0.726, 0.826, 0.895, and 0.920. The preliminary value of / for
a load unity at the middle was 0.885 which is nearly 4 per cent
less than the final value. The greatest difference is that for
a load at 5 and amounts to 0.039; from that point to the end
the difference decreases in magnitude while it increases in pro-
portion to the corresponding values of /.

The revised value of / for the dead load is 1533.9 kips and
the dead load stresses, also expressed in kips, are given in the
following table : .

DEAD LOAD STRESSES. (SEkE FiG. 126.)

SuBscrIPTS. 124 L D 14
o — — 1928 — — 566
1 — 61 — 1780 + 199 — 361
2 — III — 1640 + 132 — 303
3 — 166 — 1511 + 117 - 277
4 — 232 — 1386 + 114 — 260
5 — 321 — 1254 + 130 — 253
6 — 434 — 1113 + 145 — 235
7 — 549 - 987 + 136 — 193
8 — 597 - + 57 — 161

The final value of A due to temperature is 3.218 x 29/1.102
= 84.7 kips (see Art. 89). The revised stresses in Lg, Us, D,,
and Vj are as follows:

Ly Us D, Vs
Deadload . . . . —15II - 597 + 114 - 277
Liveload . . . . . + 15§ + 196 + 447 +192
—1772 —877  —235  — 565

Temperature. . . . F 193 + 480 F 101 + 82



ARrrT. ol. EFFECT OF YIELDING SUPPORTS. 25§

To obtain the revised live load stresses the only change
required in the influence diagrams is that of the influence lines
for H. :

On comparing these dead and live load stresses with their
preliminary values it may be seen that the relative difference
between the corresponding values of /A is no measure of the
relative difference between the stresses.

The attention of the student is directed to the great advantage
of arranging the computations in a systematic order and of pre-
serving all the intermediate results as well as the logarithms
employed in obtaining them, since so many of them are used
several times in an example like that considered in Arts. 87—9o.

Prob. 89. Find the deflection of the crown of the arch in the
preceding example under full live load, and compute the range
of its deflection caused by a change in temperature of + 75
degrees Fahrenheit.

Prob. go. Determine the final horizontal thrusts for the arch
in Art. 73 provided it be made continuous at the crown.

ART. 91. EFFECT OF YIELDING SUPPORTS.

In the preceding article it was found that when / is equal
to one kip and £ is assumed as 1000 kips per square inch, the
horizontal displacement of the right support is 1.102 inch.
For E =29000 kips a displacement of one inch corresponds
to H=1.0x29/1.102=26.3 kips, and to a stress in U of
26.3 X 5.667 = 149 kips. That is, if one of the supports of the
arch should yield so as to increase the distance between the
end hinges by one inch, the compression in U (see Fig. 127)
would be increased by 149000 pounds, and for other displace-
ments in the same proportion. This fact indicates the necessity
of having unyielding foundations in order that a two-hinged
arch may be adopted with safety and economy at a given
locality. It also shows the importance of an accurate location
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of the hinges in the erection of the structure, so that the span
may have the assumed value at the standard temperature.

A yielding of one inch horizontally of one of the supports
of the two-hinged arch rib, used as an example in Arts. 77-83,
would reduce the reaction A due to the dead and live loads by
27.55 kips and increase the positive bending moment at the
crown by 27.55 x 26.0 = 715.4 kip-feet, which exceeds the bend-
ing moment due to the live load. This value of A is computed
by making A equal to one inch in equation (3) of Art. 76 and
proceeding in the same manner as in Art. 81.

Prob. 91. Construct the influence line for the reaction of one
of the supports of the Niagara railroad arch whose dimensions
and loads are given in Arts. 87, 88 and 9o, and find its mag-
nitude and direction when the reaction is a maximum.

ART. 92. THE CRESCENT BRACED ARCH.

Several metallic arches of crescent shape and with open web
bracing have been constructed in Europe in places where high
bridges were required, the live load being transferred to the
arch at comparatively few points. Several of these structures
were referred to in Art. 75. See the article on the St. Lawrence
bridge competition in Engineering News, Jan. 7, 1897, and note
the comment on the crescent braced arch.

The methods outlined in Arts. 87—9o for the spandrel-braced
arch apply also to this type, or indeed to any form of trussed
arch with two hinges. The curves of the chords are generally
made parabolic, but the method of treatment is independent of
the form of the curves, and the difference in labor on that
account is comparatively slight.

Prob. 92. Refer to the Engineering News, Aug. 9 and 30,
1884, and notice the relation between the unit stresses in the.
Garabit viaduct due to the dead, live, and wind loads.
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CHAPTER VIIL
ARCHES WITHOUT HINGES.
ART. 93. DEscrIPTIVE NOTES.

When metallic arches with no hinges have their ends bolted
to the abutment so that no change in direction can occur, bend-
ing moments are developed at the ends. Such arches are stiff
and have high stresses due to temperature.

The finest example of the metallic arch with fixed ends is the
St. Louis bridge over the Mississippi river, completed in 1874.
The central arch has a clear span of 520 feet and a rise of about
47 feet, while the adjacent arches have a span of 502 feet and a
rise of 43} feet. The arch ribs have chords 12 feet apart united
by isosceles bracing (see Fig. 135). The four ribs in each span
support a double-track railroad and a paved highway. Each "
track passes between two ribs at the crown. The load is trans-
ferred to the ribs at the panel points by vertical posts, there
being 44 panels in the central span. The radius of the upper
chord of the rib is 742 feet for all the spans. A full account of
the construction and erection of this structure together with
the tests of materials and the theory of the ribbed arch without
hinges may be found in C. M. WoobpwaRrp’s History of the St.
Louis Bridge, 1881. The volume contains 47 plates of detail
drawings and photographic views.

The general details of a light military bridge over the
Cerveyrette gorge in France are published in Engineering
News, June 9, 1892. The span is 172.2 feet and the rise 37.72
feet. The arches have a depth of 2.42 feet at the crown and
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6.56 feet at the springing line. This arch illustrates a type of
which quite a number have been built in Europe. The arch is
continuous throughout, the ends of the chords being held in
position by shoes which receive their thrust. The ends are,
however, not fixed by being bolted to the supports.

The Kaiser Wilhelm bridge over the Wupper river between
Remscheid and Solingen in Germany, completed in 1897, has
the longest span of any arch with fixed ends in Europe. Its
span is §26 feet and the rise 223 feet. A skeleton diagram and
some notes regarding the erection of the bridge are given in
the Engineering Record, Dec. 25, 1897.

The Cornhouse bridge at Berne, Switzerland, completed in
1898, is noted for its beauty in form and proportion. The span
of the main arch is 358 feet and the rise from the springing
line to the center of the lower chord is 110 feet. The depth is
less at the crown than at the springings. The floor and its
load is transferred by eleven bents to the arch, these bents
being placed at every third panel point. The bracing consists
of radials and counter diagonals. See Engineering News, Dec.
19, 1895, and Dec. 16, 1897.

Prob. 93. Consult the engineering periodicals and make a
list of all the metallic arches without hinges whose principal
dimensions can be found. Record the span, rise, and ratio of
rise to span, and copy the skeleton diagram of each arch.

ART. 94. ConNDITIONS OF EQUILIBRIUM.

Let an arch rib with fixed ends have a span / and rise % and
be subject to a load P at a distance £/ from the left end. Since
the ends are fixed the reactions &, and R, produce moments at
the supports as in a beam whose ends are rigidly fastened.
Consequently the lines of action of the reactions do not pass
through the ends but cut the verticals drawn through those
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points either above or below the ends of the span. The left
reaction R; has the components /] and #, and the right reaction

[\

49

<
k
[\
oY

Fig. 133.

R, the components 7, and /. The load P is thus held in

equilibrium by the vertical forces 7] and 7, and the horizontal
forces A and H.

Let y, be the height of /A above a and y, the height of A&
above 4. Then, taking moments about ¢,

P — Vi — Hyy+ Hy =0 (1)
is the static condition that rotation shall not occur. Also,
Vi+V—P=o0 2)

is the static condition that upward or downward motion shall
not occur. These equations contain five unknown quantities
Vy Vo H, y; and y,, and hence three additional conditions are
required to determine them.

The word ‘fixed’ means that the tangents to the arch rib at «
and & do not alter their direction when the arch is deformed
under the action of the load 2. This gives a third condition.
To develope it, consider an element &s of an arch rib whose ends
were originally paralle], but which in consequence of the flexure
have become inclined to each other at the angle d¢. The angle
d¢ thus measures the change in the direction of the tangents at
the two ends of &s. In Fig. 117 it is seen that pg represents
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cdp. But pg also represents the elongation of the outer fiber

under the actual bending moment A produced by all the exterior

forces; this elongation is j—”if . %‘f Equating these two values

of pg gives the value of 4¢, whence
: ' Mds
¢ "£ EI
is the total change in the angle between the tangents to the arch

at the ends of the span. But if the ends remain fixed, this
change must be zero. Accordingly

J:"%‘w (3)

is the third condition of equilibrium for the arch with fixed ends.

The two remaining conditions are established from the con-
sideration that the thrust /7 must be of such intensity and be
applied at such heights y, and y, as to prevent the horizontal
and vertical displacements 4'%'' and 44'' which might be caused
by P. By reasoning like that of Art. 76 it is seen that the
horizontal displacement A may be expressed in terms of the
moment ' due to the vertical forces 7}, V,, and P, or in terms
of the moment A/ due to the horizontal thrust AZ. Thus, y
being the bending moment due to a horizontal force unity applied
at 4, and the two displacements being equal and opposite, there
results e M vds M vds

et I =0 | (4)
Again, let a vertical force of unity be applied at 4, the vertical
displacement A; caused by 2 must be equal and opposite to
that caused by A. Or, since x is the moment due to this force
unity, M ' xds "M xds

o ST = (5)
These equations express the fourth and fifth conditions of equi-
librium for the arch with fixed ends.
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These five conditions enable the five quantities 7}, V, A, ,,
and y, to be deduced, and thus all the external forces acting
upon the arch rib are known in intensity and position. From
these the shears and bending moments in any section may be
computed.

Prob. 94. An arch rib of 100 feet span and 20 feet rise has
a load P at 25 feet from the left end. If /7 is equal to 4 2,

and y, and y, are —14 and +6 feet respectively, find the values
of V] and V.

ART. 95. THE ParaBoric ArcH Ris.

Let a symmetrical parabolic arch rib with fixed ends have
the span / and the rise %; the equation of its axis referred to
an origin at the left end is y = 4 £(/xr — x?)//%.  To derive the
reactions due to a load P situated at the distance £/ from the
left end, the same simplifications will be made as in Art. 77,
namely, that £ is constant, ds=drsec?, /=17, sec:. Then
the equations (3), (4), (5) of the last article become, since
M=M +M",

Al 1] i
() ! " —
jo' de+ﬁM¢r+£M dr=o,
Al ] 13
! ! " —
‘L' Mydx+J;Mya+£M 'ydx =0,
R 13 1]
! ! 1" —
f dex+j;dex+£M wdx =o0.
Here the values of M’ on the left and right of the load are

M =V, M = Vix— P(x— #l),

while the value of M" is — H(y —y,) for all sections. Intro-
ducing these and replacing y by its value in terms of x, the
integration gives three equations whose solution furnishes the
values of V;, A, and y;. Then from (1) and (2) of Art. 94,
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the values of /; and y, are deduced. The results are as follows:

_10k—g, _6—10#
"-—Ts—k_ll' ”_'15_(_1_—7)," (1)
l,l=P(l+2k)(l—k)’, I/’=P(3—-2k)ﬁ', (2)

5. Pl _
H_: (1= BP8, 3)

from which numerical values may be computed for any given £.

When y, and y, have been computed R, and R, may be
found graphically, as also Vj, V;, and A, provided that the
point &, where the lines of action of R, and R, intersect that
of P is known. Here, as in Art. 77, the locus of 4 is called the
reaction locus and it is fully determined by the ordinate ¢ in
Fig. 132. From similar triangles,

2%1=%. whence q=gll, (4)
and hence the reaction locus is a horizontal straight line drawn
at a height 0.2/ above the crown of the arch.

The ordinates ¢, y;, and y, completely determine the recti-
linear sides of the special equilibrium polygon for a single
concentrated load P. The line a,@ represents the line of
action of the left reaction R, whose magnitude is given in the

H
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y # e Ur—h)

g 2 C

: R A1 2

! y i X
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Fig. 133.

force polygon at the right in Fig. 133. If »; be the length of
the perpendicular from the center of the left support to the
line a,d, the moment at that support is 4/, = R;». If R, be
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resolved into its components V] and #, the lever arm of V] is
zero and that of A is y,, hence M;= Hy,  Similarly, the
moment at the right support is M;=Hy, In Fig. 133,
% equals 0.3 and from equations (1), y; =— 0.222% and :yz
=+ 0.286 /% -The moments #/; and M, have the same signs
as the corresponding ordinates since A is positive. The for-
mulas (1) show that M is zero when % equals 0.4 and that
M, is zero when £ equals 0.6. The closing line of the moment
diagram is the axis of the arch and if the ordinates z lie above
the parabola the bending moment M = Az is positive, and when

they lie below it 47 is negative. There are three points of .

inflection 7 where the moment changes sign on passing through
zero. Fig. 132 shows that it is possible to have four points of
inflection for a single load.

The reactions 7] for any number of loads have the same
line of action as that of their resultant whose magnitude equals
the sum of the individual reactions ;. The same statement
applies to /. Because the reactions // have different points
of application the line of action of their resultant is found by
multiplying each /7 by the corresponding », or y, and dividing
the sum of the products by the magnitude of the resultant.

Equations (2) show that the values of 7] and V, are not
" equal to the corresponding reactions for a simple beam of the
same span as was the case with the three-hinged and the two-
hinged arches. The difference is given in Fig. 133 by ¢f on
the load line, the ray of being drawn parallel to the line 2,8,
Its value is P (k£ — 3#% + 2 #%) = Pk (1 — k) (1 — 2 k), or, expressed
in terms of A, and M, at the supports, it is ‘

(My— M)/l = — H(yy — 39)/ 2.
It may aid the student to imagine that the arch has a rigid

projection or arm extending from a to g, at the extremity of
which the reaction is applied. A part of the abutment or
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pier acts as such an arm. The line 446, may be regarded as a
similar arm.

Prob. 95. Compute the horizontal and vertical components of
the reactions for a panel load of 1 ldp at each panel point
of an arch rib with fixed ends which has the same dimensions

as the two-hinged arch in Art. 77. Compare the corresponding
reactions of the two arches graphically.

ART. g6. Posrriow or TeE Live Loabp.

Equation (4) in the preceding article shows that the locus
of the point of intersection & of the reactions and the load In
Fig. 133 is a straight line parallel to @. The reaction locus
thus obtained is, however, not sufficient to determine the direc-
tions of the reactions for any load The envelope of the lnes
of action of the reactions consists of two hyperbolas which are
tangent to each other at a point distant one-third of the rise

Fig. m¢

below the crown. The verticals through the supports are
asymptotes to the curve. The horizontal reaction locus and
the envelope curve are both shown in Fig. 134. The curve
may be most readily constructed by drawing a number of its
tangents with the aid of the following table.
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& »n/k & »n/k

o — 1.00 0.40 o 0.60
0.05 — 4.667 0.95 0.50 +o0.133 0.50
o.10 — 2.000 0.90 0.60 +0.222 0.40
o.15 — I.I11 0.85 0.70 + 0.286 0.30
0.20 — 0.667 0.80 0.80 +0.333 0.20
0.25 — 0.400 0.75 0.90 +0.370 o.10
0.30 . —0.222 0.70 1.00 -+ 0.400 o
0.35 — 0.095 0.65

»/k A »/k &

To find the point of division of the loads which produce the
greatest positive and negative bendix{g moments at a given
section of the arch rib, a line is drawn through the center of
moments tangent to the curve; its intersection with the reaction
locus gives the required point. When two such tangents can
be drawn there are two points of division. As the envelope
curve takes the place of the end hinges the method of de-
termining the position of the live load causing the greatest
moments and shears is in all other respects exactly like that
for two-hinged arch ribs, and therefore no additional example
is needed.

Prob. g6. A parabolic arch rib has a span of 180 feet and
a rise of 30 feet. The floor system is divided into 12 equal
panels. Find the live loading which produces the greatest
positive and negative moments and shears in sections 1 to 6..

ART. 97. DETERMINATION OF STRESSES.

After the position of the load is found which causes the
greatest positive or negative moment, the moment itself is most
conveniently determined by computation. A table of reactions
should be prepared similar to the one in Art. 77 with additional
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columns for y,, Ay,=M,, y; and Hy, = M,. The bending mo-
ment 4t any section is

M=M+Vix— Hy—2ZP(x—Fkl)

After 7}, V; and A are computed for a load of unity at each
panel point, the thrust is found by means of a diagram and
' table like those given in Art. 79, and the
shear is found at the different sections in
the manner explained in Art. 83.

When the arch rib has open web brac-
ing the dead load stresses may be obtained
" graphically by a stress diagram, it being
necessary however to introduce an aux-
iliary truss composed of one or two tri-
angles to connect the end of the trussed
arch with the point of application of the horizontal reaction as
illustrated in Fig. 135.

Fig. 135.

Prob. 97. Compute the greatest positive and negative mo-
ments and shears in sections 5 and 10 of the arch in Prob. gs.

ART. 98. RIB SHORTENING.

The effect of the thrust along the axis of the arch is similar
to that for the two-hinged arch (see Art. 80) but since the ends
are fixed the horizontal reactions are applied some distance
above the line 24 in Fig. 136. Rigid arms may be imagined as

e
4

.

Fig. 136.

connecting the rib with the points of application of A. Since
there are no other external forces their lines of action must co-
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incide and consequently y, =y, On applying this candition to.
equation (3) of Art. 94, it becomes,

! ,
‘I;(J’—J’l)d«"=°: or =y, =44 (1)
and hence the moment M 'is Hz = — H(y — % ).

To find the value of /7 due to the rib shortening it may be
noted that the last term in equation (4) of Art. 94 gives the"
horizontal displacement due to /7, and that, as in Art. 80, S//E
is the equal displacement due to the thrust along the axis.
Hence

f’(y §/z)ydx st
" E

the integration of which gives

v s/,
H=— 42 72 ) (2)

which is the horizontal thrust due to rib shortening.

This formula is applied in the same manner as that illustrated
by the example in Art. 80 for the two-hinged arch. On com-
parison it is seen that the value of A for an arch with fixed
ends is six times as great as for one with two hinges. Further,
the largest ordinate z for positive moments is one-third as great,
and hence the greatest positive moment is twice as great in
arches with fixed ends as in those with hinged ends. At the
fixed ends where the maximum moments are negative the bend-
ing moment due to rib shortening is four times as great as that
at the crown for two-hinged arches. ‘

Since A is negative the moments have the opposite signs from
the ordinates z, but as there is usually no difficulty in determin-
ing the signs of these moments such as might occur in dealing
with the live load, no special inconvenience or liability to error
will result from this fact. The signs of the moments are
marked on Fig. 136.
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ART. 9. TEMPERATURE STRESSES.

Since changes in temperature develope equal and opposite
reactions /A their lines of action must coincide and be above
the axis @b in Fig. 136 at a distance of two-thirds of the rise
of the arch for the same reasons as those given in the pre-
. ceding article. For a fall of ¢ degrees in temperature the axis
would be shortened by an amount equal to e/ (see Art. 81) pro-
vided one end were free to move. Substituting the values of
M" =— H(y — 4£%), ds=drseci, and [ = I,seci, as before,
the last term in equation (4) of Art. 94 is equal to e?/, or

1
— Hf(y — 4B ydr = ELet,

and after integrating and reducing, there is found for a fall in
temperature,

_ _45Ele

. # 42’ ()
and similarly, for a rise in temperature,
H=145ELet

+ 455 (2)

For falling temperature the bending moments have the opposite
signs from those of the ordinates 2, as illustrated in Fig. 136,
while for rising temperature they have the same sign.

The above values of /7 bear the same relation to its values
for an arch rib with two hinges as was found in the preceding
article to exist between the corresponding thrusts A due to the
shortening of the rib axis;. that is, a given change in tempera-
ture causes six times as great a horizontal reaction in an arch
rib with fixed ends as in one with hinged ends. The moment
at the crown is twice as great while that at the fixed ends is four
times as great as at the crown of the rib with two hinges.

The stresses due to temperature in an arch rib with either
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solid or open webbing may be found by the methods already
given for the two-hinged arch.

Prob. g8. The central arch rib of the St. Louis bridge has a
span of 519.233 feet and a rise of 47.31 feet. The chords at the
center have a section area of 67 square inches and are 12 feet
apart. The coefficient of expansion for a change of 8o degrees
Fahrenheit was taken at 0.000527 and the coefficient of elas-
ticity of the steel tubes composing the chords was 27 000 00O
pounds per square inch. The thrust at the piers was found to
be 204.9 tons and the moment — 6747 tons-feet. What would
be the values of the thrust and moment if the arch were para-
bolic with the same rise and with its moment of inertia varying
as that assumed in deducing the preceding formula?

ART. 100. CONCLUDING REMARKS.

The theory of the three-hinged arch, presented in Chap. V, is
in all respects more exact and satisfactory, than that of the arch
with two hinges or the arch with fixed ends. This is the case
because the introduction of the hinge at the crown renders the

" reactions statically determinate. Thus, whatever be the loading,
the reactions due to those loads are found without any assump-
tions derived from the theory of elasticity, and the resulting
stresses are as closely exact as in the case of a simple beam or
truss.

It is generally supposed that a three-hinged arch is not sub-
ject to stresses due to changes in temperature. In strictness,
however, such stresses will occur, for a fall in temperature
causes a decrease in the rise of the crown, and, as the span does
not change, the horizontal thrust will be increased. Likewise
a rise in temperature will decrease the horizontal thrust. These
changes in the reactions will modify the existing stresses to a
slight extent particularly in arch ribs of shallow depth.
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For the two-hinged and fixed-ended arch ribs marked stresses
due to changes in temperature occur, those for the latter being
at certain places from two to four times as great as those for the
former, and both far exceeding those that occur in the three-
hinged structure. In respect to temperature stresses, then, the
three-hinged arch takes the first rank while the arch with fixed
ends has the least advantage.

In regard to stiffness the reverse is the case, for the restraint
of fixed ends lessens the deformation that would otherwise occur.
Both under live load and under changes of temperature the arch
with fixed ends is subject to less deflection than the two-hinged
arch, while the latter is also materially stiffer than the arch with
three hinges. Hence it is that while the three-hinged structure
may be suitable for a highway bridge of light traffic, it may fail
to give satisfaction if used for a railroad bridge of long span
under heavy traffic.

Both the two-hinged and fixed-ended arches are statically
indeterminate structures, that is, the reactions and stresses can
only be determined by taking into account the deformation of
the material, and this is always supposed to occur within the
limit of elasticity. Hence the common theory of the arch rib is
subject to all the imperfections of the theory of continuous
structures. Many of the objections against continuous bridges,
stated in Art. 12, apply with equal force to these two forms of
arches; in particular the erection demands the most careful
workmanship, and yielding supports will cause great changes in
stresses. Further, if loads should ever be applied which cause
the stresses to exceed the elastic limit of the material, the entire
theory fails and it is impossible to predict the degree of security
of the structure.

Undoubtedly many more arched bridges will be built in the
future than in the past, but in view of the arguments here set
forth it is thought that the main development should be along
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the line of the three-hinged structure. The study of the best
proportions, and of the most advantageous method of combining
arch ribs and spandrel bracing is yet in its infancy, but through
this it may be possible to render the three-hinged arch more
advantageous in regard to stiffness and to readily apply to cases
where the two-hinged form is now used. Only in instances
where abutments of solid rock are at hand and where the traffic
is very heavy can the use of the statically indeterminate forms
be regarded as entirely legitimate in theory and satisfactory in
practice.
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Thurston’s Alloys, Brasses, and Bronzes.........oo0.0v .. 8vo, 250
‘Wilson's Cyanide Processes.......ccccvvivenneeeiesss...12mo, 1 50

‘“  The Chlorination Process....cececcevveeeeess..12mo, 1.60

ASTRONOMY.

PRACTICAL, THEORETICAL, AND DESCRIPTIVE.

Craig’s Azimuth.......ccoveieeenn ciessssessasrecassesss dto, 8 850
Doolittle’s Practical Astronomy.....cceeevereienseseess..8v0, 4 00
Gore’s Elements of Geodesy...... R . L C

Hayford’s Text-book of Geodetic Astronomy.............8vo. 8 00
Michie and Harlow's Practical Astronomy.................8v0, 8 00

' White’s Theoretical and Descriptive Astronomy..........12mo, 2 00
8



BOTANY.
GARDENING FOR LADIES, ETc.

Baldwin’s Orchids of New England....... ceeeesss«Small 8vo,
Loudon's Gardening for Ladies. (Downing.)............ 12mo,
Thomé’s Structural Botany......ccvviviiieieianiinnnns 16mo,
‘Westermaier's General Botany. (Schneider.) ............ 8vo,

BRIDGES, ROOFS, Etc.

CANTILEVER—DRAW—HI16HWAY—SUSPENSION.
(See also ENGINEERING, Pp. 7.)

Boller's Highway Bridges............. [ R A (' 8
* ¢ The Thames River Bridge.......... +ee0 0 .4t0, paper,
Burr's Stresses in Bridges.... ....... tecesetsnecrnasanas .8vo,
Crehore’s Mechanics of the Girder....... ceeenrsras veee...8vo0,

Dredge’s Thames Bridges...... «¢esevs......7 parts, per part,
Du Bois’s Stresses in Framed Structures,............Small 4to,

Foster's Wooden Trestle Bridges .............ccoiiiinit 4to,
Greene's Arches in Wood, ete.......ocovviennnnnns vesees 8vo,
o Bridge Trusses.......... N 8vo,

‘ Roof Trusses........coevvieenievscesoncccenses. . .8v0,
Howe’s Treatise on Arches .......... Cere eeees Ceeeienns 8vo,
Jolunson’s Modern Framed Structures.............. Small 4to,
Merriman & Jacoby’s Text-book of Roofs and Bridges.
Part 1., Stresses..... ... e e eterees aeenees Lo 8vo,

" » sriman & Jacoby's Text-book of Roofs and Bridges.
’ Part IL.. Graphic Statics ...... feeerireniaiieieas 8vo,
Merriman & Jacoby’s Text-book of Roofs and Bridges.
Part III., Bridge Design..... cieene Ceeessieenvensas 8vo,

Merriman & Jacoby's Text-book of Roofs and Bridges.
Part IV., Continuous, Praw, Captilever, Suspension, and
Arched Bridges........coooviiiiiiiiiiiiiiiiin, 8vo,

* Morison’s The Memphis Bridge............... ..Obiong 4to,

‘Waddell’s Iron Highway Bridges.... . ....oc0ceiennece. ... .80,

‘ . De Pontibus (a Pocket-book- for Bridge Engineers).

N . . 16mo, morocco,

‘Wood’s Construction of Bridges and Roofs. .s.......i.04..8v0,

“Wright's Designing of Draw Spans. Parts I. add I1..8vo, each

o o o o Complelé.... o .so. .80,
4

$1 50
150
2 25
2 00

2 00
5 00
3 50
5 00
125
10 00
5 00
2 50
2 50
125
400
10 00

2 50
2 50
2 50
10 00

4 00

8 00
200

260

8 50




CHEMISTRY.

QUALITATIVE—QUANTITATIVE—ORGANIC—INORGANIC, ETC.

Adrlance’s Laboratory Calculations.,ssvesvevevvinsor...12mo,
Allen’s Tables for Iron Apalysis.........cocivivueee.. .8v0,
Austen’s Notes for Chemical Students................... 12mo,
Bolton’s Student’s Guide in Quuntitative Analysis. ..... .. .8vo,
Classen’s Analysis by Electrolysis. (Herrick and Boltwood.).8vo,
Crafts's Qualitative Analysis. (Schaeffer.)..............12mo,
Drechsel’s Chemical Reactions. (Merrill.),.............. 12mo,
Fresenius’s Quantitative Chemical Analysis. (Allen.)....... 8vo,
‘e Qualitative ‘“ o (Johmson.)... .. 8vo,

« “ « o (Wells.) Trans,

16th German Edition..........ccoiviiiiniinan, .s..8vo0,
Fuertes’s Water and Public Health.oovvot vvvuiees vees.12mo,
Gill’s Gasand Fuel Apalysis.............vvu ee ceenenn 12mo,
Hammarsten's Physiological Chemistry. (Maudel)........ 8vo,
Helm’s Principles of Mathematical Chemistry. (Morgan).12mo,
Kolbe’s Inorganic Chemistry.............. eieeens «v.0.12mo,
Ladd’s Quantitative Chemical Analysis.........c.vevanen 12mo,
Landauer’s Spectrum Analysis. (Tingle.)..covueeeninennn. 8vo,
Lob's Electrolysis and Electrosynthesis of Organic Compounds.
(Lorenz.)......... P e et eeesaasetencattateens 12mo,
Mandel’s Bio-chemical Laboratory......c.cooveieneinnns 12mo,
Mason’s Water-8upply.c.covuerer et erereneensnsses sonas 8vo,

*  Examination of Watcr. (In the press.)

Miller’s Chemical Physics.....coovvvniiiiiiiiinnnnnan, 8vo,
Mixter's Elementary Text-book of Chemistry.............12mo,
Morgan’s The Theory of Solutions and its Results.......12mo,
Nichols's Water-cupply (Chemical and Sanitary)...... vose.8v0,
O’Brine’s Laboratory Guide to Chemical Analysis.......... 8vo,
Perkins’'s Qualitative Analysis............o voiviiiaien 12mo,
Pinner's Organic Chemistry. (Austen.)................. 12mo,
Poole’s Calorific Powerof Fuels........coovveiiiinnanen. 8vo,
Ricketts and Russell’s Notes on Inorganic Chemistry (Non-
metallic)......oo coiiiiiiien. ... Oblong 8vo, morocco,
Ruddiman’s Incompatibilities in Prescriptions............. 8vo,
Schimpf’'s Volumetric Analysis......coooviiiiiiiiinnn 12mo,
Bpencer’s Sugar Manufacturer’s Handbook . 16mo, morocco flaps,

6

$1 25
8 00
150
180
8 00
150
125
6 00
8 00

5 00
150
125
4 00
150
150
100
8 00

100
1350
5 00

2.00
150
100
2 50
2 00
100
150
8 00

5
2 00
2 50
2 00



Spencer's Handbook for Chemists of Beet Sugar Houses.

16mo, morocco, $8 00
Stockbridge's Rocks and Soil8....ceveeeveieeiiieieenes..8v0, 2 50
Van Deventer's Physical Chemistry for Beginners. (Boltwood.)

12mo,
‘Wells’s Inorganic Qualitative Analysis....... e e +es.12mo, 150
‘“ Laboratory Guide in Qualitative Chemical Analysis.
8vo, 160

‘Whipple's Microscopy of Drinking-water.................8vo,

‘Wiechmann’s Chemical Lecture Notes...................12mo, 8 00
“ Sugar Analysis......oienie ivnnn «e..Small 8vo, 2 60 .

‘Wulling’s Inorganic Phar. and Med. Chemistry....~....12mo, 2 00

' DRAWING.
ELEMENTARY—GEOMETRICAL—MECHANICAL—TOPOGRAPHICAL.
Hill’s Shades and Shadows and Perspective............... 8vo, 200
MacCord’s Descriptive Geometry.........ooevieiinnnnnnn. 8vo, 800
o Kinematics.....oooiviiiiiiiiiiiiiiiiiiinene 8vo, 5 00
“ ‘Mechanical Drawing .........oovvuniinnnns ...8v0, 4 00

Mabhan’s Industrial Drawing. (Thompson.)........2 vols., 8vo, 8 50
Reed’s Topographical Drawing. (H.A.)...cvevvveivvone. dto, 5§ 00
Reid’s A Course in Mechanical Drawing ......c.ocovns. ....8v0. 200
¢ Mechanical Drawing and Elementary Machine Design.
8vo. (In the press.)
Smith’s Topographical Drawing. (MacmiHan.)............8v0, 2 50

Warren’s Descriptive Geometry....... Ceeresernas 2 vols., 8vo, 38 50
o Drafting Instruments.......coovvve.vann. ....12mo, 1256
¢ Free-hand Drawing ocovovvviinineinennnnn.. 12mo,” 1 00
v Linear Perspective......... voeivenivenninen. 12mo, 1 00
“ Machine Construction. ... .....coovvunnen 2 vols., 8vo, 7 50
« Plane Problems. .. cocovreeeetcreesernnvenss..12mo, 125
‘ Primary Geometry....ooveieneeiiiiniiieens 12mo, 5
“  Problems and Theorems. ... cuveeerrenarereenss 8vo, 2 50
“ Projection Drawing.... .... et reeee e 12mo, 1 50
¢ Bhades and Bhadows......cooviiiiiiiiiiiiienn. 8vo, 3800
“  Btereotomy—Stone-cutting.veeeiieseeiieaiiaaan, 8vo, 2 60

Whelpley’s Letter Engraving .........ovi0eveineens....12mo, 2 00
6




ELECTRICITY AND MAGNETISM.

ILLUMINATION—BATTERIES—PHYSICS.

Anthony and Brackett's Text-book of Physics. (Magie.)..8vo, $3 00
Anthony's Theory of Electrical Measurements...........12mo, 1 00
Barker’s Deep-sea Soundings.......c.cooeievevieeenee...8v0, 2 00
Benjamin’s Voltaic Cell..... teessiaaiisrisseissinseenss.8v0, 8 00
. History of Electricity....ocoeveeeieeaivianann, 8vo 800
Cosmic Law of Thermal Repulsion.......ccvvveeveies . 12mo, 5
Crehore and Squier’s Experiments with a New Polnrizing Photo-
Chronograpb. .c.cveveceserierriccsnserecsnssenes .8v0, 8 00
* Dredge’s Electric Illuminations. . . .2 vols., 4to, half morocco, 25 00

‘“ “ “ Vol IL....covevveenensndto, 750
Gilbert’s De magnete. (Mottelay.)......eecevvevivnnsn...8v0, 2 50
Holman’s Precision of Measurements....c.coeveseeecascacs 8vo, 2 00

“ Telescope-mirror-scale Method............ Large 8vo, %

Michie’s Wave Motion Relating to Sound and Light,.......8vo, 4 00
Morgan’s The Theory of Solutions and its Results........12mo, 1 00
Niaudet’s Electric Batteries. (Fishback.)..... veeesies...12mo, 2 50
Pratt and Alden’s Street-railway Road-beds...............8v0, 2 00
Reagan’s Steam and Electric Locomotives...............12mo, 2 00
Thurston’s Stationary Steam Engines for Electric Lighting Pur-

POBES. ¢ vavsvnrneriann PP 11, 1+ )
Tillman’s Heat.ooviveeieiiieniennnss cveeseserriesecess.8v0, 150
ENGINEERING.

C1vIL—MECHANICAL—SANITARY, ETC.

(S¢e also BRIDGES, p. 4; HYDRAULICS, p. 9; MATERIALS oF EN-
GINEERING, p. 10; MECHANICS AND MACHINERY, p. 12 ; STEAM
ENGINES AND BOILERS, p. 14.)

Baker’s Masonry Construction........... seresseseserarans 8vo, 500

“  Surveying Instruments....... PN 12mo, 38 00
Black’s U. 8. Public Works........ci00evvvsreso. Oblong 4to, 5 00
Brooks’s Street-railway Location..... «ievee..16mo, morocco, 1 50
Byrne’s Highway Construction. ....... [N ceecsane 8vo, 500

¢« Inspection of Materials and Workmanship....... 16mo, 8 00
Carpenter’s Experimental Engineering ............ sessses 8vo, 600

7



Church’s Mechanics of Engineering—Solids and Fluids. .. .8vo,

‘e Notes and Examples in Mechanics...............8vo0,
Crandall's Earthwork Tables.....cvvivveiees vvnnn e .. .8v0,

v The Transition Curve...............16mo, morocco,
* Dredge’s Penn. Railroad Counstruction, etc. . . Folio, half mor.,
* Drinker’s Tunnelling..........ccoevuuen. 4to, half morocco,
Eissler’s Explosives—Nitroglycerine and Dynamite........8vo,
Folwell’s Bewerage.......c.viaeeiiresecsssssisasnens....8v0,

Powler’s Coffer-dam Process for Piers...coeeeeenanenn.. ..8vo
Gerhard’s Sanitary House Inspection.................... 12mo,
Godwin’s Railroad Engineer’s Field-book...... 16mo, morocco,
Gore's Elements of Geodesy....... . eeenn emeeree eaaan 8vo,

Howard’s Transition Curve Field-book.....12mo, morocco flap,
Howe's Retaining Walls (New Edition.)............ ....12mo,

Hudson’s Excavation Tables. Vol IL...........ccovuo.. 8vo,
Hutton’s Mechanical Engineering of Power Plants........ 8vo,
Johnson’s Materials of Construction.,.............. Large 8vo,
“ Stadia Reduction Diagram..Sheet, 234 X 28} inches,

“ Theory and Practice of Surveying........ Small 8vo,
Kent’s Mechanical Engineer's Pocket-book. . . ..16mo, morocco,
Kiersted's Sewage Disposal..... ..c.oviiievecineaiiiin., 12mo,
Mahan’s Civil Engineering. (Wood.)..covevirevainnnnne. 8vo,
Merriman and Brook's Handbook for Surveyors. . . .16mo, mor.,
Merriman’s Geodetic Surveying......coevviiiiiiinniann. 8vo,
. " Retaining Walls and Masonry Dams..........8vo,

“ Sanitary Engineering..... Cerrer e 8vo,
Nagle’s Manual for Railroad Engineers........16mo, morocco,
Patton's Civil Engineering......coovviiiiveevinnviiinnn 8vo,
“  Foundations...........coeiiiiiiiiiiiiiiienaine, 8vo,
Pratt and Alden’s Street-railway Road-beds............... 8vo,
Rockwell’s Roads and Pavements in France........ .... 12mo,
Ruffner’s Non-tidal Rivers......cocovvt viviiinivnniinnnn 8vo,
Searles’s Field Engineering............... 16mo, morocco flaps,
¢ Railroad Spiral ...........0vues 16mo, morocco flaps,
Siebert and Biggin's Modern Stone Cutting and Masonry. . .8vo,
Smart’s Engineering Laboratory Practice....... .. ..ot 12mo,
Smith's Wire Manufacture and Uses............cvn. Small 4to,
Spalding’s Roads and Pavements..... ....... Citeraanen 12mo,

S

$6 00
2 00
150
1 50
20 00
25 00
4 00
8 00
2 50
100
2 50
2 50
150
125
100
5 00
8 00

4 00
500
125
5 00
2 00
200
2 00
2 00
3 00
7 50
500
200
125
123
300
150
150
2 50
8 00
2 00




Spalding's Hydraulic Cement,.........oe0eiv oun. vesnes 12mo,
Taylor’s Prismoidal Formulas and Earthwork............. 8vo,
Thurston’s Materials of Construction.........c.ocvvvennn.. 8vo,
* Trautwine's Civil Engineer’s Pocket-book. ..16mo, mor. Qaps,
* Lo Cross-8eCtion. v vvvvevevverennrnnt vrnnnns Sheet,
* o Excavations and Embankments............. 8vo,
* “ Laying Out Curves.............12mo, morooco,

Waddell's De Pontibus (A Pocket-book for Bridge Engineers).
16mo, morocco,

‘Wait's Engineering and Architecturnl Jurisprudence....... 8vo,
Sheep,

‘ Law of Field Operation in Engineering, etc........ 8vo.
Warren’s Stereotomy—Stone-cutting............oovvan... 8vo,
Webb’s Engineering Instruments. . . ........... 16mo, morocco,
Wegmann’s Construction of Masonry Dams.............. .4to,
Wellington’s Location of Railways... ... eeerees cesones 8vo,
Wheeler's Civil Engineering.....c.ccocviieiviiainneno....8v0,
Wolfl’s Windmill as a Prime Mover. eesisesresesntrsnnnas 8vo,

HYDRAULICS.

‘W ATER-WHEELS— WINDMILLS—SERVICE PIPE—DRAINAGE,
(See also ENGINEERING, p. 7.)

Bazin’s Experiments upon the Contraction of the Liquid Vein.

(Trautwine.). .. ooveiieiiiiiiiiiniiiiineneanan, 8vo,
Bovey’s Treatise on Hydraulics......ocoeviiiiniiniinnne. 8vo,
Coftin’s Graphical Solution of Hydraulic Problems.......12mo,
Ferrel's Treatise on the Winds, Cyclones, and Tornadoes. . .8vo,

Fuertes’s Water and Public Health........ eeeeie e 12mo,
Ganguillet & Kutter's Flow of Water. (Hering & Trautwine.)
8vo,

Hazen’s Filtration of Public Water Supply........... «vv8vo,
Herschel’s 115 Experiments ....... Ceeeiiaes Cheeiiaeaeeas 8vo,
Kiersted’s Sewage Disposal......ciovvviviiinnanen.....12mo,
Mason’s Water Supply...cooeveeernnnns tersrane e 8vo,
Merriman’s Treatise on Hydraulics, .. ...ocovvivvinans oo, 8vo,
Nichols’s Water Supply (Chemical and Sanitary).......... 8vo,
Ruffner’s Improvement for Non-tidal Rivers........ ..... 8vo,
Wegmann’s Water Supply of the City of New York ... ....4to,
Weisbach’s Hydraulics. (Du Bois.)...ivvvereniiniann ...8vo,
Wilson’s Irrigation Engineerivg.... ..... Cereeaairae sees 8vo,
“ Hydraulic and Placer Mining......... .... ««..12mo,
Wolff’s Windmill as a Prime Mover....ovovene.. tieeses e 8vO,
‘Wood'’s Theory of Turbines.... ........ cerieiaieeae. ... 80,
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MANUFACTURES.

BoILERS—EXPLOSIVES—IRON—SUGAR— W ATCHES —WOOLLENS, ETC.
Allen’s Tables for Iron Analysis.......evceriieecieens....8v0, $8 00

Beaumont’s Woollen and Worsted Manufacture.........12mo,

Bolland's Encyclopadia of Founding Terms..... evoeees.12mo,
‘ The Iron Founder.......o.cve.vuvvvinnienesss.12mo,
¢ oo ‘  Supplement..... eesereeeess.12mo,

Bouvier's Handbook on Oil Painting......... .0t vie....12mo,
Eissler's Explosives, Nitroglycerine and Dynamite.... ... .8vo,
Ford’s Boiler Making for Boiler Makers...........s.....18mo,
Metcalfe’s Cost of Manufactures......ceeceververecscess.8v0,
Metcalf’s Steel—A Manual for Steel Users...............12mo,
* Relsig’s Guide to Piece Dyeing. . tvesersesinss.8V0,
Spencer’s Sugar Manufacturer’s Handbook ...16mo, mor. flap,
. Handbook for Chemists of Beet Sugar Houses.
16mo, mor. flap,

Thurston’s Manual of Steam Boilers.......cc.eveveeeness 8v0,

Walke's Lectures on Explosives............ P - A (8
West’s American Foundry Practice......... RN ..12mo,

¢ Moulder’s Text-book ......... P vrevesesses.12mo,
Wiechmann’s Sugar Analysis................ ceeans Small 8vo,

‘Woodbury’s Fire Protection of Mills.........coevivuenss. 80,

MATERIALS OF ENGINEERING.

STRENGTE—ELASTICITY—RESISTANCE, ETC.

(See also ENGINEERING, D. 7.)

Baker's Masonry Construction. . .. N L (8
Beardslee and Kent'’s Strength of Wrought Iron...........8v0,
Bovey’s Strength of Materials.................. veeeeesss.8vo,
Burr's Elasticity and Resistance of Materials...............8vo,
Byrne’s Highway Construction......... ....covvennane. ..8vo,
Church’s Mechanics of Engineering—Solids and Fluids... ..8vo,
Du Bois’s Stresses in Framed Structures............. Small 4to,
Johnson’s Materials of Construction....... terisesienses..8V0,
Lanza’s Applied Mechanics. . .........civvvieiiiiiveen.. .8Bv0,
Martens's Materials. (Henning.).......... 8vo. (In the press.)
Merrill’s Stones for Building and Decoration.............. 8vo,
Merriman’s Mechanics of Materials........................8v0,

‘e Strength of Materials......... e 12mo,
Patton’s Treatise on Foundations................... Ceneen 8vo,
Rockwell’s Roads and Pavements in France............. 12mo,
Spalding’s Roads and Pavements. ................. «e...12mo,

150
8 00
2 50
2 60
2 00
4 00
100
5 00
200
28 00
200
8 00
6 00
4 00
260
2 50
2 50
2 60
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Thurston's Materials of Construction.......ec0o00e oo vunnn 8vo,

“ Materials of Engineering........... '+ . .8 vols., 8vo,

Vol. I, Non-metallic .......... viceveceeenenes...8v0,

Vol. IL, Iron and Steel........ Ceeeereneereietinees 8vo,

Vol. III Alloys, Brasses, and Bronzes..............8vo,

WoodsResistanceofMaterials e eresrerseritaatiiniiinas 8vo,
MATHEMATICS.

CALCULUB—GEOMETRY—TRIGONOMETRY, ETC.

Baker's Elliptic Functions..........eveevieniiiennens. .. .8v0,
Ballard’s Pyramid Problem.....eccvvivveivasivsessess..8v0,

Barnard’s Pyramid Problem..... Ceresreniesnersetenernns 8vo,
Bass’s Differential Calculus......o.covvivennenine.n...12mo,
Briggs’s Plane Analytical Geometry. . cereeneeass..12mo,
Chapman’s Theory of Equations......cceoeveieeeierennes 12mo,
Compton’s Logarithmic Computations.........ccooune.. 12mo,
Davis’s Introduction to the Logic of Algebra..............8vo,
Halsted’s Elements of Geometry..c.cocveenee covreeeess 870,
‘“  Synthetic Geometry......ccovvunnn. tesreeses..8v0,
Johnson's Curve Tracing........ N 12mo,
*  Differential Equations—Ordinary a.nd Partial.
Small 8vo,
« Integral Calculus...... ceeieen eseetrienennnn 12mo,
¢ ‘ “ Unabridged. 12mo. (In the press.)
¢ Least Squares....... et et et 12mo,
Ludlow’s Logarithmic and Other Tables. (Bass.).........8vo,
‘“  Trigonometry with Tables. (Bass.)....... veee..8v0,
Maban’s Descriptive Geometry (Stone Cutting)............8vo,
Merriman and Woodward’s Higher Mathematics...... .... 8vo,
Merriman’s Method of Least Squares.......... feeeeeines 8vo,
Parker's Quadrature of the Circle ............... eeeaseens 8vo,

Rice and Johnson’s Differential and Integral Calculus,
2 vols. in 1, 12mo,

« Differential Calculus............Small 8vo,

‘o Abridgment of Differential Calculus.
Small 8vo,
Totten’s Metrology.......... e 8vo,
Warren’s Descriptive Geometry.....ooooveeininn. 2 vols., 8vo,
*  Drafting Instruments.......... sesssacens «.e..12mo,
“ Free-hand Drawing.............. Cesereeeeaes 12mo,
¢ Higher Linear Perspective......... eveeenns «...8vo0,
‘¢ Linear Perspective....... Ceeerenaieaiee ++s.12mo,
‘“  Primary Geometry......... Certtreereateaennans 12mo,
o Plane Problems.........coviveennen. sesesse.12mo,

1
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Warren’s Problems and Theorems. ....vvciviiiareraanes, 8o,
“ Projection Drawing.......... vessinens «eees..12mo,
Wood’s Co-ordinate Geometry.............. cererrisese...8v0,
“ Trigonometry....ooivieiiiiiiiiiie aen veensee..12mo,
Woolf’s Descriptive Geometry.,....... e .... .Royal 8vo,

MECHANICS— MACHINERY.
TEXT-BOOKS AND PrAcTICAL WORKS.
(See also ENGINEERING, p. 7.)

Baldwin’s Steam Heating for Buildings..................12mo,

Benjamin’s Wrinkles and Recipes.......o.ovuns vevess12mo,
Chordal’s Letters to Mechanics............. Ceereaeanass 12mo,
Church’s Mechanics of Engineering.... .. Ceeeetiens ....8vo,
¢ Notes and Examples in Mechanics...... tesssses 8vo,
Crehore’s Mechanics of the Girder..... Ceireees verieee....8v0,
Cromwell's Belts and Pulleys..... Cetetreiiienesaninens 12mo,
“ Toothed Gearing.....co.ouvuians Cevesnoannas 12mo,
Compton’s First Lessons in Metal Working..........,...12mo,
Compton and De Groodt’s Speed Lathe..,.....ccven..... 12mo,
Dana’s Elementary Mechanics .vv.oeen..... e, 12wo,
Dingey’s Machinery Pattern Making...........ovveunn.. 12mo,

Dredge’s Trans. Exhibits Building, World Exposition.

4to, half morocco,

Du Bois’s Mechanics. Vol. I., Kinematics ........ eeees 8vo,
¢ o Vol. II., Statics.. ....... Ceeeaea. 8vo,

“ “ Vol. III., Kinetics....... .... .. ..8vo,
Fitzgerald’s Boston Machinist........ocoviiiiiiines e 18mo,
Flather’s Dynamometers. ....ooevvuens. Ceeeeieeiieiiee 12mo,
“ Rope Driving....ooviviieiieniennnsn e 12mo,
Hall’s Car Lubrication......oooiviiiiiiiiiiiiieiinnenes 12mo,
Holly’'s Saw Filing .......cooviiiiiii it 16mo,

Johnson’s Theoretical Mechanics. An Elementary Treatise.
(In the press.)

Jones's Machine Design. Part I., Kinematics............. 8vo,
“ “ “ Part II., Strength and Proportion of
Muchine Parts.......coiiiiiiiiiriinnanenieannns 8vo,
Lanza’s Applied Mechanics...... ettt seiterter e 8vo,
MacCord’s Kinematics. .....cvvueerieinnsnsone canioes ....8vo,
Merriman’s Mechanics of Materials. ...covveeveeeenn. ve . 8vo0,
Metcalfe’s Cost of Manufactures.........c.covvvveeeenrenn. 8vo,
Michie’s Analytical Mechanics..voovvvrvnunannns P 8vo,
Richards’s Compressed Air...........cciieiiiiiiininns, 12mo,
Robinson’s Principles of Mechanism....... hete eeieeiaan 8vo,
Smith's Press-working of Metals..........coceevveinennn. 8vo,
Thurston’s Friction and Lost Work...... Ceseiirannss ....8vo,

12

N R
88888

e88e888

2888

DD o e O 0 DWW O
ot
<

8

[y
- WWH WA ®O
(=3 o [~ =
*88888888

-

I N N
888888888



Thurston’s The Animal as a Machine .............. oo 12mo,
Warren’s Machine Coustruction...... veveiaessas 2 vols,, 8vo,
‘Weisbach’s Hydraulics and Hydraulic Motors. (Du Bois.)..8vo,

“ Mechanics of Engineering. Vol. III., Part I.,

Sec. I. (Klein.)...... teeetsieinattisraeareenerannn 8vo,
Weisbach’'s Mechanics of Engiueering. Vol. III., Part 1.,
Bec. II. (Klein.).cove veeirennennne teranninennnas 8vo,
Weisbach’s Steam Engines. (Du Bois.) ....... Ceeesssaaen 8vo,
‘Wood'’s Analytical Mechanics.........oovveeunn.. cenrens .8vo,
‘“  Elementary Mechanics.. cas eeeese12mo,
o e o Supplunent un(l Key. ...12mo,
METALLURGY.

IrRoN—GoLD —SILVER—ALLOYS, ETC.
Allen’s Tables for Iron Analysis.. ... teese seareiinan vese8vo0,
Egleston’s Gold and Mercury............. everess.Linrge 8vo,
“ Metallurgy of Silver.................... Large 8vo,
* Kerl's Metallurgy—Copper and Iron. .......oovvivvnienn 8vo,
* o Steel, Fuel, etc.........o00vvv.vee. 8v0,
Kunbardi's Ore Dressing in Europe..........coooiinnins 8vo,
Metcalf’s Steel—A. Manual for Steel Users................12mo,
O'Driscoll’s Treatment of Gold Ores..... eeeaieritesarans 8vo,
Thurston’s Iron and Steel...........cccoiiiiiiiiniiniines 8vo,
“ AllOYS. ittt i i i i e i eaees 8vo,
‘Wilson’s Cyanide Processes.........covvveiiinninnnnss 12mo,

MINERALOGY AND MINING.

MINE ACCIDENTS—VENTILATION—ORE DRrEssiNeg, ETc.

Barringer’s Miuerals of Commercial Value....Oblong morocco,
Beard's Ventilation of Mines.......... ceraeeases. 12mo,
Boyd’s Resources.of South Western Vlrginla. evesnseseses .8Y0,

‘“  Map of Sonth Western Virginia. . ...Pocket-book form,
Brush and Peunfield’s Determinative Mineralogy. New Ed. 8vo,
Chester’s Catalogue of Minerals,.......covevvvivenyas.s..8v0,

“ ‘ “ “ tieesesrassesacnsyaess s JPApET,
‘“  Dictionary of the Names of Minerals,............8vo,
Dana’s American Localities of Minerals...cceceveeeseea.. .8v0,

Descriptive Mineralogy. (E. 8.).....8vo, half morocco,
“  Miueralogy and Petrograpbhy (J.D.)............18mo,
'*  Minerals and How to Stndy Them. (K. 8.).......12mo,
*  Text-book of Mineralogy. (E. 8.)...New Edition, 8vo,
» Drinksr't’l‘unnel]iug, Explosives, Compouads, and Rook Drills.
4to, half morocco,
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Egleston’s Catalogue of Minerals and S8ynonyms...........8vo,
Elssler’s Explosives—Nitroglycerine and Dynamite........8vo,
Hussak’s Rock-forming Minerals. (Smith.).........8mall 8vo,
Ihiseng’s Manual of Mining.. .c.cvcevvviienenennnna...8v0,
Kunhardt’s Ore Dressing in Europe.......cceiecoeses....8v0,
O’Driscoll's Treatment of Gold Ores.............ccoeeee...8v0,
* Penfleld’s Record of Mineral Tests....... .......Paper, 8vo,
Rosenbusch’s Microscopical Physiography of Minerals and
Rocks. (Iddings.).eeeieceieerioceiennincsssesss.8v0,
Sawyer's Accidents in Mines...........c..ccceq... . Large 8vo,
Stockbridge’s Rocks and Soils........ecc0ivviiianeee. . .8v0,
‘Walke’s Lectures on Explosives.......cv.veeevseraeesess. 870,
‘Williams's Lithology........ asessess N «...8vo,
Wilson’s Mine Ventilation........ccec0v veivviiieesss..16mo,
‘  Hydraulic and Placer Mining.........c........12mo,
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STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

STATIONARY—MARINE—LocoMOoTIVE—GAB ENGINES, ETc.

(8Bes also ENGINEERING, p. 7.)

Baldwin’s Steam Heating for Buildings.....c.cs..0......12mo0,
Clerk's Gas Engine........c..ooo v outes etoeeees.Small 8vo,
Ford's Boiler Making for Boiler Makers....cooce0ueeren. 18mo,
Hemenway’s Indicator Practice.....cvuivvveeeiensss..12mo,
Hoadley’s Warm-blast Furuace......... B - A (X
Kneass's Practice and Theory of the Injector eeeiereeraas 8vo,
MacCord’s Slide Valve. . JO R . ) (X
Meyer's Modern Locomotlve Constructlon teeeiesaneeanss dto,
Peabody and Miller’s Steam-bollers..........ceceeevveese..8v0,
Peabody’s Tables of Saturated Steam.....................8v0,
o Thermodynamics of the Steam Engine......... 8vo,
‘ Valve Gears for the Steam-Engine..............8vo,
Pray’s Twenty Years with the Indicator............Large 8vo,
Pupin and Osterberg’s Thermodynamics...c.eeeeess....12mo,
Reagan’s Steam and Electric Locomotives........ ...... 12mo,
Rontgen’s Thermodynamics. (Du Bois.)....ccieveneee....8v0,
Sinclair's Locomotive Running........c.ce00ivveieean...12mo,
Snow’s Steam-boiler Practice..... .... vo..8v0. (In the press.)
Thurston’s Boiler Explogions.... ...coveiiveisescsenes12mo,
o Engine and Boiler Trials. .......ooovvvinnn.. ..8vo,
o Manual of the Steam Engine. Part I., Structure
‘ and Theory....cccvciiveennrenicniesonee. .8v0,
. Manual of the Steam Eungine. Part II., Design,
Construction, and Operation...............8vo,
2 parts,
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Thurston’s Philosophy of the Steam Engine.............12mo,
o Reflection on the Motive Power of Heat. (Carnot.)

12mo, 150

o« Stationary Steam Engines...................12mo, 1 50

¢ Steam-boiler Construction and Operation.......8vo, & 00
8pangler’s Valve Gears........ R .| L
‘Weisbach’s Steam Engine. (Du Bois.)....... vesessseses.8v0, B 00
‘Whitham’s Constructive Steam Engineering.......... eeen 8vo, 10 00
. Steam-engine Design........... eveneae cedncaes 8vo, 5 00
‘Wilson’s Steam Boilers. (Flather.)........ veeessseesse.12mo, 2 50
‘Wood’s Thermodynamics, Heat Motors, etc...............8v0, 4 00

TABLES, WEIGHTS, AND MEASURES.

For ActuaniEs, CHEMISTS, ENGINEERS, MECHANICS—METRIC
TasBLEs, ETC.

, Adriance’s Laboratory Calculations,........ccec0iveei...12mo,
Allen’s Tables for Iron Analysis.......ceeiieeieeasreess. .8v0,
Bixby’s Graphical Computing Tables...........c.c0.....8Bheet,
Compton’s Logarithms. ................. cerrsseeneans..12mo,
Crandall’s Railway and Earthwork Tables..... ..........8vo,
Egleston's Weights and Measures........cccovveeree...18mo,
Fisher's Table of Cubic Yards..ceeeeeiveeereees.. .Cardboard,
Hudson’s Excavation Tables, Vol. IL..... ....ccevevee...8v0,
Johnson's Stadia and Earthwork Tables .e.eoveveerennnn.. 8vo,
Ludlow’s Logarithmic and Other Tables. (Bass.).......12mo,
Totten’s Metrology...cceeeetesssersseorcassossccsssssss 80,
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VYENTILATION.
STEAM HEATING—HOUSE INSPECTION—MINE VENTILATION.

Baldwin’s Steam Heating. ....covvieteieciisceaeisss.12mo,
Beard’s Ventilation of Mines...oi.cecevenveeeiienasas.12mo,
Carpenter’s Heating and Ventilating of Buildings..........8vo,
Gerhard’s Sanitary House Inspection............S8quare 16mo,
Mott’s The Air We Breathe, and Ventilation............16mo,
Reid’s Ventilation of American Dwellings..............12mo,
‘Wilson’s Mine Ventilation.....coeecevteiiieeiececesss st .16mo,
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MISCELLANEOUS PUBLICATIONS,

Alcott’s Gems, Sentiment, Language...............Gilt edges, - 5 00
Bailey’s The New Tale of 8 Tub..oveeivvverienarensea8v0, K
Ballard's Solution of the Pyramid Problem...............8v0, 1 50
Barnard’s The Metrological System of the Great Pyramid..8vo, 1 50
Davig’s Elements of Law.......cccceeievereeccrsrecccees.8v0, 2 00
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Emmon’s Geological Guide-book of the Rocky Mountains. .8vo,
Ferrel's Treatise on the Winds..c.........cocv0vnnnnns ...8vo,
Haines’s Addresses Delivered before the Am. Ry. Assn .12mo.
Mott’s The Fallacy of the Present Theory of Sound..B8q. 16mo,

Perkinsg’s Cornell University.......... Ceeeceninann Oblong 4to,
Ricketts’s History of Rensselaer Polytechnic Institate..... 8vo,
Rotherham’s The New Testament Critically Emphasized.
12mo,

. The Emphasized New Test. A new translation.
Large 8vo,

Totten’s An Important Question in Metrology.....cc...... 8vo,
Whitehouse's Lake Meeris.....ovvviviiiiiiinnnnn sevaen Paper,

* Wiley’s Yosemite, Alaska, and Yellowstone .............4to,

HEBREW AND CHALDEE TEXT-BOOKS.
For ScHOOLS AND THEOLOGICAL SEMINARIES.

Gesenius’s Hebrew and Chaldee Lexicon to Old Testament.

(Tregelles.). oo ovvvvnnnen ....Small 4to, half morocco,

Green’s Elementary Hebrew Grammar. ....... veesssess.12mo,

“  Grammar of the Hebrew Language (New Edition).8vo,

‘  Hebrew Chrestomathy.......cooeviieninnrnrnenn. 8vo,
Letteris’'s Hebrew Bible (Massoretic Noles in English).

8vo, arabesque,

MEDICAL.
Bull’s Maternal Management in Health and Disease.......12mo,
Hammarsten’s Physiological Chemistry. (Mandel.)........ 8vo,

Mott’s Composition, Digestibﬂity, and Nutrifive Value of Food.
Large mounted chart,

Ruddiman’s Incompatibilities in Prescriptions....... eees.8v0,
Bteel’s Treatise on the Diseases of the Ox.... ....cvveeet. 8vo,

““ Treatise on the Diseases of the Dog................8vo,
Woodbull's Military Hyglene...... e RN ...16mo,

Worcester’s Small Hospitals—Establishment and Maintenance,
including Atkinson’s Suggestions for Hospital Archi-
tecture............... ....... teseeres.esresssssss.12mo,
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